Large electrostrictive response in lead halide perovskites

Abstract

Lead halide perovskites have demonstrated outstanding performance in photovoltaics, photodetectors, radiation detectors and light-emitting diodes. However, the electromechanical properties, which are the main application of inorganic perovskites, have rarely been explored for lead halide perovskites. Here, we report the discovery of a large electrostrictive response in methylammonium lead triiodide (MAPbI3) single crystals. Under an electric field of 3.7 V µm−1, MAPbI3 shows a large compressive strain of 1%, corresponding to a mechanical energy density of 0.74 J cm3, comparable to that of human muscles. The influences of piezoelectricity, thermal expansion, intrinsic electrostrictive effect, Maxwell stress, ferroelectricity, local polar fluctuation and methylammonium cation ordering on this electromechanical response are excluded. We speculate, using density functional theory, that electrostriction of MAPbI3 probably originates from lattice deformation due to formation of additional defects under applied bias. The discovery of large electrostriction in lead iodide perovskites may lead to new potential applications in actuators, sonar and micro-electromechanical systems and aid the understanding of other field-dependent material properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Electrostrictive response of MAPbI3 single crystal.
Fig. 2: Macroscopic measurement of electrostrictive response for MAPbI3 single crystal.
Fig. 3: Stability and response timescale of electrostriction.

Data availability

The authors declare that all relevant data supporting the findings of this study are available within the paper and its Supplementary Information.

Change history

  • 12 October 2018

    In the version of this Article originally published, the y axis of Fig. 1c was incorrectly labelled ‘S (%)’; it should have been ‘–S (%)’. Also, the link for the Supplementary Video was missing from the online version of the Article. These errors have now been corrected.

References

  1. 1.

    Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    NREL Best research-cell efficiencies. https://www.nrel.gov/pv/assets/images/efficiency-chart-20180716.jpg (accessed 16 July 2018).

  3. 3.

    Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Shen, L. et al. A self-powered, sub-nanosecond-response solution-processed hybrid perovskite photodetector for time-resolved photoluminescence-lifetime detection. Adv. Mater. 28, 10794–10800 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogeneous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Xiao, Z. G. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Gautschi, G. Piezoelectric Sensorics (Springer, New York, 2002).

  11. 11.

    Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Uchino, K. Piezoelectric Actuators and Ultrasonic Motors (Springer, New York, 1997).

  13. 13.

    Bobnar, V. et al. Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system. J. Appl. Phys. 98, 024113–024113 (2005).

    Article  Google Scholar 

  14. 14.

    Wang, F. F., Jin, C. C., Yao, Q. R. & Shi, W. Z. Large electrostrictive effect in ternary Bi0.5Na0.5TiO3-based solid solutions. J. Appl. Phys. 114, 027004 (2013).

    Article  Google Scholar 

  15. 15.

    Li, F., Jin, L. & Guo, R. High electrostrictive coefficient Q33 in lead-free Ba(Zr0. 2Ti0. 8)O3-x(Ba0. 7Ca0. 3)TiO3 piezoelectric ceramics. Appl. Phys. Lett. 105, 232903 (2014).

    Article  Google Scholar 

  16. 16.

    Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    Li, F., Jin, L., Xu, Z., Wang, D. & Zhang, S. Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. Appl. Phys. Lett. 102, 152910 (2013).

    Article  Google Scholar 

  18. 18.

    Li, F., Xu, Z. & Zhang, S. The effect of polar nanoregions on electromechanical properties of relaxor-PbTiO3 crystals: extracting from electric-field-induced polarization and strain behaviors. Appl. Phys. Lett. 105, 122904 (2014).

    Article  Google Scholar 

  19. 19.

    Baek, S. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    Li, F., Jin, L., Xu, Z. & Zhang, S. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

    Article  Google Scholar 

  21. 21.

    Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    CAS  Article  Google Scholar 

  22. 22.

    Xu, H. S. et al. Ferroelectric and electromechanical properties of poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360–2362 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    Bauer, F., Fousson, E. & Zhang, Q. M. Recent advances in highly electrostrictive P(VDF–TrFE–CFE) terpolymers. IEEE Trans. Dielectr. Electr. Insul. 13, 1149–1154 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Zhang, Q. M. et al. An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Huang, C. & Zhang, Q. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501–506 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Javadi, A., Xiao, Y., Xu, W. & Gong, S. Chemically modified graphene/P(VDF–TrFE–CFE) electroactive polymer nanocomposites with superior electromechanical performance. J. Mater. Chem. 22, 830–834 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Le, M. Q. et al. All-organic electrostrictive polymer composites with low driving electrical voltages for micro-fluidic pump applications. Sci. Rep. 5, 11814 (2015).

    Article  Google Scholar 

  28. 28.

    Chen, Z. et al. Single crystal perovskite solar cells with broadened light-harvesting spectrum. Nat. Commun. 8, 1890 (2017).

    Article  Google Scholar 

  29. 29.

    Dong, Q. et al. Lateral-structure single-crystal hybrid perovskite solar cells via piezoelectric poling. Adv. Mater. 28, 2816–2821 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Strelcov, E. et al. CH3NH3PbI3 perovskites: ferroelasticity revealed. Sci. Adv. 3, e1602165 (2017).

    Article  Google Scholar 

  31. 31.

    Mirfakhrai, T., Madden, J. D. W. & Baughman, R. H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    Cheng, C., Weissmüller, J. & Ngan, A. H. W. Fast and reversible actuation of metallic muscles composed of nickel nanowire-forest. Adv. Mater. 28, 5315–5321 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Weissmüller, J. et al. Charge-induced reversible strain in a metal. Science 300, 312–315 (2003).

    Article  Google Scholar 

  34. 34.

    Baughman, R. H. Playing nature’s game with artificial muscles. Science 308, 63–65 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    Liu, S., Zheng, F., Grinberg, I. & Rappe, A. M. Photoferroelectric and photopiezoelectric properties of organometal halide perovskites. J. Phys. Chem. Lett. 7, 1460–1465 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Uchino, K. Ferroelectric Devices (Taylor and Francis, Boca Raton, 2010).

  37. 37.

    Damjanovic, D. & Newnham, R. Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3, 190–208 (1992).

    Article  Google Scholar 

  38. 38.

    Feng, J. Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014).

    Article  Google Scholar 

  39. 39.

    Lin, Q. Q., Armin, A., Nagiri, R. C. R., Burn, P. L. & Meredith, P. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Quarti, C., Mosconi, E. & De Angelis, F. Interplay of orientational order and electronic structure in methylammonium lead iodide: implications for solar cell operation. Chem. Mater. 26, 6557–6569 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Wu, X. et al. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites. Sci. Adv. 3, e1602388 (2017).

    Article  Google Scholar 

  44. 44.

    Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Article  Google Scholar 

  45. 45.

    Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. 127, 1811–1814 (2015).

    Article  Google Scholar 

  46. 46.

    Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  47. 47.

    Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  Google Scholar 

  48. 48.

    Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  Google Scholar 

  49. 49.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Office of Naval Research under award N00014-17-1-2727, the Department of Energy (DOE) under award DE-EE0006709 and the National Science Foundation (NSF) under awards DMR-1505535 and DMR-1420645. E.M. and F.D.A. acknowledge the project PERSEO—‘Perovskite-based Solar cells: towards high Efficiency and long-term stability’ (Bando PRIN 2015—Italian Ministry of University and Scientific Research (MIUR) Decreto Direttoriale 4 November 2015 no. 2488, project no. 20155LECAJ) for funding.

Author information

Affiliations

Authors

Contributions

J.H., B.C. and Q.D. conceived the idea. B.C. designed the experiments. T.L. and A.G. conducted the AFM measurements. Q.D., Z.C. and Y.L. grew the single crystal. E.M. and F.D.A. conducted the computational simulations. J.S. and S.D. performed Mach–Zehnder interferometer measurements. Y.D. carried out the XRD measurement. B.C., F.D.A. and J.H. wrote the paper, and all authors reviewed the paper.

Corresponding authors

Correspondence to Filippo De Angelis or Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11, Supplementary Figures 1–16, Supplementary Tables 1–3 and Supplementary References 1–14

Supplementary Video 1

Electrostrictive response of MAPbI3 single crystal under alternative bias on and bias off through lateral electrode on the top surface.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, T., Dong, Q. et al. Large electrostrictive response in lead halide perovskites. Nature Mater 17, 1020–1026 (2018). https://doi.org/10.1038/s41563-018-0170-x

Download citation

Further reading