Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multicaloric cooling cycle that exploits thermal hysteresis

Abstract

The giant magnetocaloric effect, in which large thermal changes are induced in a material on the application of a magnetic field, can be used for refrigeration applications, such as the cooling of systems from a small to a relatively large scale. However, commercial uptake is limited. We propose an approach to magnetic cooling that rejects the conventional idea that the hysteresis inherent in magnetostructural phase-change materials must be minimized to maximize the reversible magnetocaloric effect. Instead, we introduce a second stimulus, uniaxial stress, so that we can exploit the hysteresis. This allows us to lock-in the ferromagnetic phase as the magnetizing field is removed, which drastically removes the volume of the magnetic field source and so reduces the amount of expensive Nd–Fe–B permanent magnets needed for a magnetic refrigerator. In addition, the mass ratio between the magnetocaloric material and the permanent magnet can be increased, which allows scaling of the cooling power of a device simply by increasing the refrigerant body. The technical feasibility of this hysteresis-positive approach is demonstrated using Ni–Mn–In Heusler alloys. Our study could lead to an enhanced usage of the giant magnetocaloric effect in commercial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Explanation of the exploiting hysteresis cycle in comparison to the conventional magnetocaloric cooling cycle.
Fig. 2: Experimental demonstration of exploiting hysteresis cycle in Ni–Mn–In.
Fig. 3: Bulk Ni–Mn–In Heusler sample under the influence of a magnetic field and uniaxial stress.
Fig. 4: Testing the multicaloric performance of suction-cast Ni–Mn–In under the influence of a magnetic field and uniaxial stress.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Belman-Flores, J. M., Barroso-Maldonado, J. M., Rodríguez-Muñoz, A. P. & Camacho-Vázquez, G. Enhancements in domestic refrigeration, approaching a sustainable refrigerator— review. Renew. Sust. Energ. Rev. 51, 955–968 (2015).

    Article  Google Scholar 

  2. Gutfleisch, O. et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011).

    Article  CAS  Google Scholar 

  3. Sandeman, K. G. Magnetocaloric materials: the search for new systems. Scripta Mater. 67, 566–571 (2012).

    Article  CAS  Google Scholar 

  4. Moya, X., Kar-Narayan, S. & Mathur, N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014).

    Article  CAS  Google Scholar 

  5. Takeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 68, 48–54 (December, 2015).

  6. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450–454 (2005).

    Article  CAS  Google Scholar 

  7. Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).

    Article  CAS  Google Scholar 

  8. Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).

    Article  Google Scholar 

  9. Matsunami, D., Fujita, A., Takenaka, K. & Kano, M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat. Mater. 14, 73–78 (2015).

    Article  CAS  Google Scholar 

  10. Bonnot, E., Romero, R., Mañosa, L., Vives, E. & Planes, A. Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys. Rev. Lett. 100, 125901 (2008).

    Article  Google Scholar 

  11. Tušek, J. et al. The elastocaloric effect: a way to cool efficiently. Adv. Energy Mater. 5, 1500361 (2015).

    Article  Google Scholar 

  12. Smith, A. et al. Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Eng. Mater. 2, 1288–1318 (2012).

    Article  CAS  Google Scholar 

  13. Scarpa, F., Tagliafico, G. & Tagliafico, L. A. A classification methodology applied to existing room temperature magnetic refrigerators up to the year 2014. Renew. Sust. Energ. Rev. 50, 497–503 (2015).

    Article  CAS  Google Scholar 

  14. Kitanovski, A., Plaznik, U., Tomc, U. & Poredoš, A. Present and future caloric refrigeration and heat-pump technologies. Int. J. Refrig. 57, 288–298 (2015).

    Article  Google Scholar 

  15. Yu, B., Liu, M., Egolf, P. W. & Kitanovski, A. A review of magnetic refrigerator and heat pump prototypes built before the year 2010. Int. J. Refrig. 33, 1029–1060 (2010).

    Article  CAS  Google Scholar 

  16. Gómez, J. R., Garcia, R. F., Catoira, A. D. M. & Gómez, M. R. Magnetocaloric effect: a review of the thermodynamic cycles in magnetic refrigeration. Renew. Sust. Energ. Rev. 17, 74–82 (2013).

    Article  Google Scholar 

  17. Engelbrecht, K. et al. Experimental results for a novel rotary active magnetic regenerator. Int. J. Refrig. 35, 1498–1505 (2012).

    Article  Google Scholar 

  18. Zimm, C. et al. Design and performance of a permanent-magnet rotary refrigerator. Int. J. Refrig. 29, 1302–1306 (2006).

    Article  CAS  Google Scholar 

  19. Bjørk, R., Smith, A., Bahl, C. & Pryds, N. Determining the minimum mass and cost of a magnetic refrigerator. Int. J. Refrig. 34, 1805–1816 (2011).

    Article  Google Scholar 

  20. Monfared, B., Furberg, R. & Palm, B. Magnetic vs. vapor-compression household refrigerators: A preliminary comparative life cycle assessment. Int. J. Refrig. 42, 69–76 (2014).

    Article  Google Scholar 

  21. Gottschall, T., Skokov, K. P. & Gutfleisch, O. Kühlvorrichtung und ein Verfahren zum Kühlen. German patent 10 2016 110, 385.3 (2016).

  22. Gottschall, T. et al. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration. Adv. Funct. Mater. 27, 1606735 (2017).

    Article  Google Scholar 

  23. Mañosa, L. et al. Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat. Commun. 2, 595 (2011).

    Article  Google Scholar 

  24. Gutfleisch, O. et al. Mastering hysteresis in magnetocaloric materials. Phil. Trans. R. Soc. A 374, 20150308 (2016).

    Article  Google Scholar 

  25. Song, Y., Chen, X., Dabade, V., Shield, T. W. & James, R. D. Enhanced reversibility and unusual microstructure of a phase-transforming material. Nature 502, 85–88 (2013).

    Article  CAS  Google Scholar 

  26. Gottschall, T., Skokov, K. P., Benke, D., Gruner, M. E. & Gutfleisch, O. Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials. Phys. Rev. B 93, 184431 (2016).

    Article  Google Scholar 

  27. Pérez-Reche, F. J., Vives, E., Mañosa, L. & Planes, A. Athermal character of structural phase transitions. Phys. Rev. Lett. 87, 195701 (2001).

    Article  Google Scholar 

  28. Karaca, H. E. et al. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009).

    Article  CAS  Google Scholar 

  29. Gottschall, T., Skokov, K. P., Frincu, B. & Gutfleisch, O. Large reversible magnetocaloric effect in Ni–Mn–In–Co. Appl. Phys. Lett. 106, 021901 (2015).

    Article  Google Scholar 

  30. Gottschall, T. et al. Reversibility of minor hysteresis loops in magnetocaloric Heusler alloys. Appl. Phys. Lett. 110, 223904 (2017).

    Article  Google Scholar 

  31. Chirkova, A. et al. Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions. Acta Mater. 106, 15–21 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 743116—project Cool Innov), the DFG (grant no. SPP 1599), the CICyT (Spain) project MAT2016-75823-R and the HLD at HZDR, a member of the European Magnetic Field Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

T.G., M.F., A.T., L.P. and K.P.S. were responsible for the sample preparation. T.G., A.G.-C., A.P. and L.M. designed and performed the tensile test and cycling experiments. A.T., M.F. and K.P.S. took care of the adiabatic temperature-change measurements and microscopy. All the authors discussed the results and developed the explanation of the experiments. T.G. wrote the manuscript supported by all the co-authors. O.G. led the project.

Corresponding authors

Correspondence to Tino Gottschall or Oliver Gutfleisch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary References 1–2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottschall, T., Gràcia-Condal, A., Fries, M. et al. A multicaloric cooling cycle that exploits thermal hysteresis. Nature Mater 17, 929–934 (2018). https://doi.org/10.1038/s41563-018-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0166-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing