Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decoupling the role of stress and corrosion in the intergranular cracking of noble-metal alloys

Abstract

Intergranular stress-corrosion cracking (IGSCC) is a form of environmentally induced crack propagation causing premature failure of elemental metals and alloys. It is believed to require the simultaneous presence of tensile stress and corrosion; however, the exact nature of this synergy has eluded experimental identification. For noble metal alloys such as Ag–Au, IGSCC is a consequence of dealloying corrosion, forming a nanoporous gold layer that is believed to have the ability to transmit cracks into grain boundaries in un-dealloyed parent phase via a pure mechanical process. Here using atomic-scale techniques and statistical characterizations for this alloy system, we show that the separate roles of stress and anodic dissolution can be decoupled and that the apparent synergy exists owing to rapid time-dependent morphology changes at the dealloyed layer/parent phase interface. We discuss the applicability of our findings to the IGSCC of important engineering Fe- and Ni-based alloys in critical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: No-load control samples.
Fig. 2: STEM analysis of an injected grain boundary crack.
Fig. 3: Statistical analysis of grain boundary corrosion penetration and crack injection. N(L) is the number of penetrations/injections of length L.
Fig. 4: Crack injection and IGSCC fracture surfaces.
Fig. 5: NPG/parent phase interfacial region.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Scully, J. R. Environment-assisted intergranular cracking. MRS Bull. 24, 36–42 (1999).

    Article  CAS  Google Scholar 

  2. Sieradzki, K. & Newman, R. C. Stress-corrosion cracking. J. Phys. Chem. Solids. 48, 1101–1113 (1987).

    Article  CAS  Google Scholar 

  3. Parkins, R. N. Mechanistic aspects of intergranular stress corrosion cracking of ferritic steels. Corrosion 52, 363–374 (1996).

    Article  CAS  Google Scholar 

  4. Saxena, A., Singh Raman, R. K. & Muddle, B. C. Slow strain rate testing for monitoring cracking of mild steels for vessels and pipes for processing using caustic solutions. Int. J. Pres. Ves. Pip. 83, 399–404 (2006).

    Article  CAS  Google Scholar 

  5. Andresen, P. L. & Ford, F. P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems. Mater. Sci. Eng. A 103, 167–184 (1988).

    Article  Google Scholar 

  6. Lehockey, E. M., Brennenstuhl, A. M. & Thompson, I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking. Corros. Sci. 46, 2383–2404 (2004).

    Article  CAS  Google Scholar 

  7. Scott, P. M. Stress corrosion cracking in pressurized water reactors—interpretation, modeling, and remedies. Corrosion 56, 771–782 (2000).

    Article  CAS  Google Scholar 

  8. King, A., Johnson, G., Engelberg, D., Ludwig, W. & Marrow, J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321, 382–385 (2008).

    Article  CAS  Google Scholar 

  9. Alvarez, A. Corrosion on aircrafts in marine-tropical environments: A technical analysis. Mater. Perform. 36, 33–38 (1997).

    CAS  Google Scholar 

  10. King, F., Lilja, C. & Vahanen, M. Progress in the understanding of the long-term corrosion behaviour of copper canisters. J. Nucl. Mater. 438, 228–237 (2013).

    Article  CAS  Google Scholar 

  11. Maiya, P. S., Shack, W. J. & Kassner, T. F. Stress-corrosion cracking of candidate material for nuclear waste containers. Corrosion 46, 954–963 (1990).

    Article  CAS  Google Scholar 

  12. Kain, V., Sengupta, P., De, P. K. & Banerjee, S. Case reviews on the effect of microstructure on the corrosion behavior of austenitic alloys for processing and storage of nuclear waste. Metall. Mater. Trans. A 36A, 1075–1084 (2005).

    Article  CAS  Google Scholar 

  13. Danielson, M. J., Oster, C. A. & Jones, R. H. Crack tip chemistry modeling of intergranular stress corrosion cracks in nickel containing segregated phosphorus and sulfur. Corros. Sci. 32, 1–21 (1991).

    Article  CAS  Google Scholar 

  14. Wells, D. B., Stewart, J., Davidson, R., Scott, P. M. & Williams, D. E. The mechanism of intergranular stress corrosion cracking of sensitized austenitic stainless steel in dilute thiosulphate solution. Corros. Sci. 33, 39–71 (1992).

    Article  CAS  Google Scholar 

  15. Newman, R. C. & Sieradzki, K. Electrochemical aspects of stress-corrosion cracking of sensitized stainless steels. Corros. Sci. 23, 363–378 (1983).

    Article  CAS  Google Scholar 

  16. Staehle, R. W. in The Theory of Stress Corrosion Cracking in Alloys (ed. Scully, J. C.) 223–286 (NATO, Brussels, 1971).

  17. Theus, G. J. & Staehle, R. W. in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (eds Staehle, R. W. et al.) 845–892 (National Association of Corrosion Engineers (NACE), Houston, 1977).

  18. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  Google Scholar 

  19. Erlebacher, J. & Sieradzki, K. Pattern formation during dealloying. Scripta Mater. 49, 991–996 (2003).

    Article  CAS  Google Scholar 

  20. Rugolo, J., Erlebacher, J. & Sieradzki, K. Length scales in alloy dissolution and measurement of absolute interfacial free energy. Nat. Mater. 5, 946–949 (2006).

    Article  CAS  Google Scholar 

  21. Dursun, A., Pugh, D. V. & Corcoran, S. G. Probing the dealloying critical potential: Morphological characterization and steady-state current behavior. J. Electrochem. Soc. 152, B65–B72 (2005).

    Article  CAS  Google Scholar 

  22. Li, R. & Sieradzki, K. Ductile–brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168–1171 (1992).

    Article  CAS  Google Scholar 

  23. Briot, N. J., Kennerknecht, T., Eberl, C. & Balk, T. J. Mechanical properties of bulk single crystalline nanoporous gold investigated by millimetre-scale tension and compression testing. Phil. Mag. 94, 847–866 (2014).

    Article  CAS  Google Scholar 

  24. Jin, H. J. et al. Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57, 2665–2672 (2009).

    Article  CAS  Google Scholar 

  25. Huber, N., Viswanath, R. N., Mameka, N., Markmann, J. & Weißmüller, J. Scaling laws of nanoporous metals under uniaxial compression. Acta Mater. 67, 252–265 (2014).

    Article  CAS  Google Scholar 

  26. Badwe, N., Chen, X. & Sieradzki, K. Mechanical properties of nanoporous gold in tension. Acta Mater. 129, 251–258 (2017).

    Article  CAS  Google Scholar 

  27. Sun, S., Chen, X., Badwe, N. & Sieradzki, K. Potential-dependent dynamic fracture of nanoporous gold. Nat. Mater. 14, 894–898 (2015).

    Article  CAS  Google Scholar 

  28. Serebrinsky, S. A. & Galvele, J. R. Effect of the strain rate on stress corrosion crack velocities in face-centred cubic alloys. A mechanistic interpretation. Corros. Sci. 46, 591–612 (2004).

    Article  CAS  Google Scholar 

  29. Newman, R. C. & Senior, N. A. A revised interpretation of ultra-fast stress corrosion cracking experiments by Serebrinsky and Galvele. Corros. Sci. 52, 1541–1544 (2010).

    Article  CAS  Google Scholar 

  30. Stewart, J., Wells, D. B., Scott, P. M. & Williams, D. E. Electrochemical noise measurements of stress corrosion cracking of sensitized austenitic stainless steel in high-purity oxygenated water at 288 °C. Corros. Sci. 33, 73–88 (1992).

    Article  CAS  Google Scholar 

  31. Manahan, M. P., Macdonald, D. D. & Peterson, A. J. Determination of the fate of the current in the stress corrosion cracking of sensitized 304SS in high temperature aqueous systems. Corros. Sci. 37, 189–208 (1995).

    Article  CAS  Google Scholar 

  32. Bruemmer, S. M. & Thomas, L. E. High-resolution analytical electron microsopy characterization of corrosion and cracking at buried interfaces. Surf. Interface Anal. 31, 571–581 (2001).

    Article  CAS  Google Scholar 

  33. Schreiber, D. K., Olszta, M. J. & Bruemmer, S. M. Grain boundary depletion and migration during the selective oxidation of Cr in a Ni–5Cr alloy exposed to high-temperature hydrogenated water. Scipta Mater. 89, 41–44 (2014).

    Article  CAS  Google Scholar 

  34. Bruemmer, S. M., Olszta, M. J., Toloczko, M. B. & Schreiber, D. K. Grain boundary selective oxidation and stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water. Corros. Sci. 131, 310–323 (2018).

    Article  CAS  Google Scholar 

  35. Shen, Z., Arioka, K. & Lozano-Perez, S. A mechanistic study of SCC in Alloy 600 through high-resolution characterization. Corros. Sci. 132, 244–259 (2018).

    Article  CAS  Google Scholar 

  36. Forty, A. J. in Physical Metallurgy of Stress Corrosion Fracture (ed. Rhodin, T. N.) 99-120 (Interscience, New York, 1959).

  37. Fritz, J. D., Parks, B. W. & Pickering, H. W. Stress corrosion cracking of Cu–18% Au in 1N Na2SO4–0.01N H2SO4. Scripta Metall. 22, 1063–1068 (1988).

    Article  CAS  Google Scholar 

  38. Kelly, R. G., Frost, A. J., Shahrabi, T. & Newman, R. C. Brittle-fracture of an Au/Ag alloy induced by a surface-film. Metall. Trans. A 22A, 531–541 (1991).

    Article  CAS  Google Scholar 

  39. Chen, J. S., Slameron, M. & Devine, T. M. Intergranular and transgranular stress corrosion cracking of Cu–30Au. Corros. Sci. 34, 2071–2097 (1993).

    Article  CAS  Google Scholar 

  40. Saito, M., Smith, G. S. & Newman, R. C. Testing the film-induced cleavage model of stress-corrosion cracking. Corros. Sci. 35, 411–413 (1993).

    Article  CAS  Google Scholar 

  41. Friedersdorf, F. & Sieradzki, K. Film-induced brittle intergranular cracking of silver–gold alloys. Corrosion 52, 331–336 (1996).

    Article  CAS  Google Scholar 

  42. Barnes, A., Senior, N. A. & Newman, R. C. Film-induced cleavage of Ag–Au alloys. Metall. Mater. Trans. A 40A, 58–68 (2009).

    Article  CAS  Google Scholar 

  43. Oberdorfer, C., Sebastien, M. E., Lütkemeyer, M. & Schmitz, G. Applications of a versatile modelling approach to 3D atom probe simulations. Ultramicroscopy 159, 184–194 (2015).

    Article  CAS  Google Scholar 

  44. Gordon, G. M. in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (eds Staehle, R. W. et al.) 893–945 (National Association of Corrosion Engineers (NACE), Houston, 1977).

  45. Dugdale, H., Armstrong, D. E. J., Tarleton, E., Roberts, S. J. & Lozano-Perez, S. How oxidized grain boundaries fail. Acta Mater. 61, 4707–4713 (2013).

    Article  CAS  Google Scholar 

  46. Sridhar, N. et al. Stress corrosion cracking and localized corrosion of carbon steel in nitrate solutions. Corrosion 72, 927–942 (2016).

    Article  CAS  Google Scholar 

  47. Knight, S. P., Birbilis, N., Muddle, B. C., Truemen, A. R. & Lynch, S. P. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys. Corros. Sci. 52, 4073–4080 (2010).

    Article  CAS  Google Scholar 

  48. Kerns, G. E., Wang, M. T. & Staehle, R. W. in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys (eds Staehle, R. W. et al.) 703–735 (National Association of Corrosion Engineers (NACE), Houston, 1977).

  49. Lynch, S. P. Progression markings, striations, and crack-arrest markings on fracture surfaces. Mater. Sci. Eng., A 468470, 74–80 (2007).

  50. Turnbull, A. Modelling of environment assisted cracking. Corros. Sci. 34, 921–960 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.S. gratefully acknowledges the support of this work by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under award DE-SC0008677. N.B. acknowledges assistance from John Mardinly and Toshihiro Aoki with STEM characterization. D.K.S., M.J.O., N.R.O. and S.M.B. acknowledge separate support from the US DOE BES Materials Science and Engineering Division. Some of the work (APT and FIB) was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Contributions

N.B. performed the control sample and crack injection experiments, prepared FIB milled samples, participated in the APT characterization and performed the STEM characterization at ASU. X.C. performed the crack injection experiments that resulted in sample fracture and SEM characterization. D.K.S. performed FIB specimen preparation (for APT and STEM) and led APT characterizations. M.J.O. performed STEM characterization, and together with N.R.O. determined the grain boundary misorientation for the sample shown in Fig. 2 of the manuscript. E.K.K., X.C. and A.Y.T. performed the control sample and crack injection experiments and statistical analysis of the data. S.M.B. directed the research team at PNNL and K.S. designed and supervised the research at ASU. All authors contributed to writing and editing this manuscript.

Corresponding author

Correspondence to K. Sieradzki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables: Table 1, Supplementary Figures: Figures 1–15, Supplementary References: 1–14

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badwe, N., Chen, X., Schreiber, D.K. et al. Decoupling the role of stress and corrosion in the intergranular cracking of noble-metal alloys. Nature Mater 17, 887–893 (2018). https://doi.org/10.1038/s41563-018-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0162-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing