Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2


Discoveries of intrinsic two-dimensional (2D) ferromagnetism in van der Waals (vdW) crystals provide an interesting arena for studying fundamental 2D magnetism and devices that employ localized spins1,2,3,4. However, an exfoliable vdW material that exhibits intrinsic 2D itinerant magnetism remains elusive. Here we demonstrate that Fe3GeTe2 (FGT), an exfoliable vdW magnet, exhibits robust 2D ferromagnetism with strong perpendicular anisotropy when thinned down to a monolayer. Layer-number-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanied by a fast drop of the Curie temperature (TC) from 207 K to 130 K in the monolayer. For FGT flakes thicker than ~15 nm, a distinct magnetic behaviour emerges in an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces an atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant ferromagnetism and for engineering spintronic vdW heterostructures5.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure and transport characterization of thin FGT flakes.
Fig. 2: RMCD measurements of monolayer FGT.
Fig. 3: Criticality analysis for FGT flakes of different thicknesses.
Fig. 4: Intermediate magnetic states and thickness-dependent phase diagram of FGT.


  1. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  2. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  3. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  Google Scholar 

  4. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotech. 13, 289–293 (2018).

    Article  Google Scholar 

  5. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  6. Gradmann, U. in Handbook of Magnetic Materials Vol. 7 (ed. Buschow, K. H. J.) 1–96 (Elsevier, Amsterdam, 1993).

  7. Huang, F., Kief, M. T., Mankey, G. J. & Willis, R. F. Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 49, 3962–3971 (1994).

    Article  Google Scholar 

  8. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  Google Scholar 

  9. Heinze, S. et al. Real-space Imaging of antiferromagnetism on the atomic scale. Science 288, 1805–1809 (2000).

    Article  Google Scholar 

  10. Deiseroth, H.-J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).

    Article  Google Scholar 

  11. Chen, B. et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J. Phys. Soc. Jpn 82, 124711 (2013).

    Article  Google Scholar 

  12. May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3–xGeTe2. Phys. Rev. B 93, 014411 (2016).

    Article  Google Scholar 

  13. Liu, S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. 2D Mater. Appl. 1, 30 (2017).

    Article  Google Scholar 

  14. Yi, J. et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 4, 011005 (2016).

    Article  Google Scholar 

  15. Zhu, J. X. et al. Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe2. Phys. Rev. B 93, 144404 (2016).

    Article  Google Scholar 

  16. Zhang, Y. et al. Emergence of Kondo lattice behavior in a van der Waals itinerant ferromagnet, Fe3GeTe2. Sci. Adv. 4, eaao6791 (2018).

    Article  Google Scholar 

  17. Zhuang, H. L., Kent, P. R. C. & Hennig, R. G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B 93, 134407 (2016).

    Article  Google Scholar 

  18. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  Google Scholar 

  19. Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015).

    Article  Google Scholar 

  20. Hsu, C. L. et al. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6, 5031–5039 (2012).

    Article  Google Scholar 

  21. Desai, S. B. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).

    Article  Google Scholar 

  22. Li, Y. & Baberschke, K. Dimensional crossover in ultrathin Ni(111) films on W(110). Phys. Rev. Lett. 68, 1208–1211 (1992).

    Article  Google Scholar 

  23. Back, C. H. et al. Experimental confirmation of universality for a phase transition in two dimensions. Nature 378, 597–600 (1995).

    Article  Google Scholar 

  24. Liu, B. et al. Critical behavior of the van der Waals bonded high T C ferromagnet Fe3GeTe2. Sci. Rep. 7, 6184 (2017).

    Article  Google Scholar 

  25. Huang, F., Mankey, G. J., Kief, M. T. & Willis, R. F. Finite-size scaling behavior of ferromagnetic thin films. J. Appl. Phys. 73, 6760–6762 (1993).

    Article  Google Scholar 

  26. León-Brito, N., Bauer, E. D., Ronning, F., Thompson, J. D. & Movshovich, R. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2. J. Appl. Phys. 120, 083903 (2016).

    Article  Google Scholar 

  27. Nguyen, G. D. et al. Visualization and manipulation of magnetic domains in the quasi-two-dimensional material Fe3GeTe2. Phys. Rev. B 97, 014425 (2018).

    Article  Google Scholar 

  28. Pierce, M. S. et al. Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 94, 017202 (2005).

    Article  Google Scholar 

  29. Deutsch, J. M. & Mai, T. Mechanism for nonequilibrium symmetry breaking and pattern formation in magnetic films. Phys. Rev. E 72, 016115 (2005).

    Article  Google Scholar 

  30. Jagla, E. A. Hysteresis loops of magnetic thin films with perpendicular anisotropy. Phys. Rev. B 72, 094406 (2005).

    Article  Google Scholar 

Download references


The authors thank M. den Nijs for the helpful discussion. The work at the University of Washington is mainly supported by NSF MRSEC 1719797. B.H. and D.X. are supported by Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0012509). W.Y. is supported by the Croucher Foundation (Croucher Innovation Award) and the HKU ORA. Synthesis efforts at ORNL (AFM) were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. X.X. and X.Z. acknowledge NSF MRSECs at the University of Washington (DMR-1719797) and the University of Columbia (DMR-1420634) for supporting the exchange visit. X.X. and J.H.C. acknowledge the support from the State of Washington funded Clean Energy Institute and from the Boeing Distinguished Professorship in Physics. Work at Rutgers (W. Wang and W. Wu) was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under Award number DE-SC0018153.

Author information

Authors and Affiliations



X.X., J.H.C. and A.M. conceived the experiment. P.M. and A.M. synthesized and characterized the bulk FGT crystal, assisted by J.S. X.Z. designed the exfoliation on a gold substrate approach. Z.F. and B.H. fabricated the samples, acquired the experimental data, assisted by T.S. and supervised by X.X., J.H.C. and D.C. W.Wang and W.Wu performed and analysed the MFM results. D.X. and W.Y. provided theoretical support. Z.F., B.H., X.X., J.H.C. and D.C. wrote the manuscript with input from all authors. All the authors discussed the results.

Corresponding authors

Correspondence to Jiun-Haw Chu or Xiaodong Xu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1-6, Supplementary References 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fei, Z., Huang, B., Malinowski, P. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nature Mater 17, 778–782 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing