Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions


Structural superlubricity is a fascinating tribological phenomenon, in which the lateral interactions between two incommensurate contacting surfaces are effectively cancelled resulting in ultralow sliding friction. Here we report the experimental realization of robust superlubricity in microscale monocrystalline heterojunctions, which constitutes an important step towards the macroscopic scale-up of superlubricity. The results for interfaces between graphite and hexagonal boron nitride clearly demonstrate that structural superlubricity persists even when the aligned contact sustains external loads under ambient conditions. The observed frictional anisotropy in the heterojunctions is found to be orders of magnitude smaller than that measured for their homogeneous counterparts. Atomistic simulations reveal that the underlying frictional mechanisms in the two cases originate from completely different dynamical regimes. Our results are expected to be of a general nature and should be applicable to other van der Waals heterostructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental set-up.
Fig. 2: Rotational anisotropy of the measured friction of a graphite/hBN heterojunction.
Fig. 3: Simulated rotational anisotropy of the friction of a graphite/hBN heterojunction.
Fig. 4: Effects of external conditions on the friction of misaligned graphite/hBN interfaces.


  1. 1.

    Holmberg, K., Andersson, P. & Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

    Article  Google Scholar 

  2. 2.

    Hirano, M. & Shinjo, K. Atomistic locking and friction. Phys. Rev. B 41, 11837–11851 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    Hirano, M. & Shinjo, K. Superlubricity and frictional anisotropy. Wear 168, 121–125 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    Shinjo, K. & Hirano, M. Dynamics of friction—superlubric state. Surf. Sci. 283, 473–478 (1993).

    CAS  Article  Google Scholar 

  5. 5.

    Martin, J. M., Donnet, C., Lemogne, T. & Epicier, T. Superlubricity of molybdenum disulfide. Phys. Rev. B 48, 10583–10586 (1993).

    CAS  Article  Google Scholar 

  6. 6.

    Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  7. 7.

    Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

    Article  Google Scholar 

  8. 8.

    Yang, J. et al. Observation of high-speed microscale superlubricity in graphite. Phys. Rev. Lett. 110, 255504 (2013).

    Article  Google Scholar 

  9. 9.

    Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Koren, E., Lörtscher, E., Rawlings, C., Knoll, A. W. & Duerig, U. Adhesion and friction in mesoscopic graphite contacts. Science 348, 679–683 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Zhang, R. et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotech. 8, 912–916 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Liu, Y., Grey, F. & Zheng, Q. The high-speed sliding friction of graphene and novel routes to persistent superlubricity. Sci. Rep. 4, 4875 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Vu, C. C. et al. Observation of normal-force-independent superlubricity in mesoscopic graphite contacts. Phys. Rev. B 94, 081405(R) (2016).

    Article  Google Scholar 

  14. 14.

    Liu, S. W. et al. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 8, 14029 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    Li, H. et al. Superlubricity between MoS2 monolayers. Adv. Mater. 29, 1701474 (2017).

    Article  Google Scholar 

  16. 16.

    Sheehan, P. E. & Lieber, C. M. Friction between van der Waals solids during lattice directed sliding. Nano Lett. 17, 4116–4121 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Filippov, A. E., Dienwiebel, M., Frenken, J. W. M., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008).

    Article  Google Scholar 

  18. 18.

    Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    Mandelli, D., Leven, I., Hod, O. & Urbakh, M. Sliding friction of graphene/hexagonal-boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 10851 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

    Article  Google Scholar 

  21. 21.

    Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theor. Comput. 12, 2896–2905 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Kolmogorov, A. N. & Crespi, V. H. Registry-Dependent Interlayer Potential for Graphitic Systems. Phys. Rev. B 71, 235415 (2005).

    Article  Google Scholar 

  24. 24.

    Donald, W. B. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Cond. Matt 14, 783–802 (2002).

    Article  Google Scholar 

  25. 25.

    Weiss, M. & Elmer, F.-J. Dry friction in the Frenkel–Kontorova–Tomlinson model: dynamical properties. Z. Phys. B Cond. Mat. 104, 55–69 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    van Wijk, M. M., Schuring, A., Katsnelson, M. I. & Fasolino, A. Moiré Patterns as a probe of interplanar interactions for graphene on h-BN. Phys. Rev. Lett. 113, 135504 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Persson, B. N. J. & Ryberg, R. Brownian motion and vibrational phase relaxation at surfaces: CO on Ni(111). Phys. Rev. B 32, 3586–3596 (1985).

    CAS  Article  Google Scholar 

  29. 29.

    Persson, B. N. J., Tosatti, E., Fuhrmann, D., Witte, G. & Woll, C. Low-frequency adsorbate vibrational relaxation and sliding friction. Phys. Rev. B 59, 11777–11791 (1999).

    CAS  Article  Google Scholar 

  30. 30.

    Vanossi, A., Manini, N., Urbakh, M., Zapperi, S. & Tosatti, E. Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Persson B. N. J. Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998).

  32. 32.

    Guerra, R., van Wijk, M., Vanossi, A., Fasolino, A. & Tosatti, E. Graphene on h-BN: to align or not to align? Nanoscale 9, 8799–8804 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K., Erdemir, A. & Sumant, A. V. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

    Article  Google Scholar 

  35. 35.

    Mandelli, D., Vanossi, A., Manini, N. & Tosatti, E. Friction boosted by equilibrium misalignment of incommensurate two-dimensional colloid monolayers. Phys. Rev. Lett. 114, 108302 (2015).

    Article  Google Scholar 

  36. 36.

    Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    CAS  Article  Google Scholar 

  37. 37.

    Braiman, Y., Hentschel, H. G. E., Family, F., Mak, C. & Krim, J. Tuning friction with noise and disorder. Phys. Rev. E 59, R4737–R4740 (1999).

    CAS  Article  Google Scholar 

  38. 38.

    Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Lu, X. K., Yu, M. F., Huang, H. & Ruoff, R. S. Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    Wang, W. et al. Measurement of the cleavage energy of graphite. Nat. Commun. 6, 7853 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Zheng, Q. et al. Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008).

    Article  Google Scholar 

  42. 42.

    Sader, J. E., Larson, I., Mulvaney, P. & White, L. R. Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995).

    CAS  Article  Google Scholar 

  43. 43.

    Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    CAS  Article  Google Scholar 

  44. 44.

    Ogletree, D. F., Carpick, R. W. & Salmeron, M. Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996).

    CAS  Article  Google Scholar 

  45. 45.

    Liu, Z. et al. A graphite nanoeraser. Nanotechnology 22, 265706 (2011).

    Article  Google Scholar 

  46. 46.

    Ma, M. et al. Diffusion through bifurcations in oscillating nano- and microscale contacts: fundamentals and applications. Phys. Rev. X 5, 031020 (2015).

    Google Scholar 

  47. 47.

    Trambly de Laissardiere, G., Mayou, D. & Magaud, L. Localization of Dirac electrons in rotated graphene bilayers. Nano Lett. 10, 804–808 (2010).

    CAS  Article  Google Scholar 

  48. 48.

    Reguzzoni, M., Fasolino, A., Molinari, E. & Righi, M. C. Potential energy surface for graphene on graphene: ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86, 245434 (2012).

    Article  Google Scholar 

  49. 49.

    Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  Google Scholar 

Download references


Q.Z. acknowledges the financial support from the NSFC (Grant no. 11572173), the National Basic Research Program of China (Grant no. 2013CB934200), the SRFDP (Grant no. 20130002110043) and the Cyrus Tang Foundation. M.M. acknowledges the financial support from the Thousand Young Talents Program (Grant no. 61050200116) and the NSFC (Grant no. 11632009 and 11772168). Y.M.S. and M.M. thank L. Ge from the NT-MDT Beijing Office and P. Cheng from Oxford Instruments China for their help in experimental device support. O.H. is grateful for financial support of the Israel Science Foundation under Grant no. 1586/17, the Lise Meitner Minerva Center for Computational Quantum Chemistry, the Center for Nanoscience and Nanotechnology at Tel Aviv University, and the Naomi Foundation via the 2017 Kadar Award. M.U. acknowledges financial support from the Deutsche Forschungsgemeinschaft, Grant no. BA 1008/21-2, and the COST Action MP1303. D.M. acknowledges the fellowship from the Sackler Center for Computational Molecular and Materials Science at Tel Aviv University, and from the Tel Aviv University Center for Nanoscience and Nanotechnology.

Author information




M.M., O.H., M.U. and Q.Z. conceived the original idea behind this study. M.M. and Q.Z. designed the experimental aspects of the study, Y.S. performed the experiments and Y.S. and M.M. analysed the experimental data with contributions from all the authors. D.M., O.H. and M.U. designed and analysed the simulations. D.M. wrote the code and conducted the simulations. All authors contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Ming Ma or Quanshui Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–19, Supplementary Tables 1–2, Supplementary References 1–29

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Mandelli, D., Hod, O. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nature Mater 17, 894–899 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing