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inherit the chirality of the K-point phonons12. 
More generally, the presented results are 
another testament that, even after decades-
long research, MoS2 and the family of layered 
transition-metal dichalcogenides continue 
to provide a fertile field for the study of 
correlation effects in quantum materials. ❐
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Learning from scratch
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If it seems dispiriting that artificial 
intelligence can defeat human 
intellect at chess and Go, how much 

more so if scientific discovery itself 
were to be done more effectively by 
machines? We don’t have to cede 
victory to AI just yet, but two  
papers have now shown that machine 
learning has the potential to point 
materials prospecting in interesting 
directions1,2.

The approach of Zhou et al.1 
is particularly suggestive. Several 
previous efforts (for example, refs 3,4) 
have used conventional descriptors 
of the elemental ingredients as the 
parameters deployed in computational 
searches. In effect, the assumption 
is that we already know what factors 
are important to materials properties, 
and just need to find the right 
combinatorial blends. But Zhou et al. 
start without such preconceptions. 
They simply supply their machine-
learning algorithm with existing 
experimental data for a vast range of 
(around 60,000) inorganic two-, three- 
and four-component compounds, 
and let the algorithm figure out for 
itself what are the relevant attributes 
of each kind of atom in a range of 
environments — that is, within the 
context of other atoms.

The result is a vast, 
multidimensional but rather sparse 
matrix of atom–environment pairs 
encoding similarities in composition 
between the compounds formed by 
different types of atom. In effect, each 
atom has an associated vector for which 
the dimensions are abstract quantities 
learnt from scratch by the algorithm. 
Some of these vector dimensions 

loosely correlate with known properties 
of the elements concerned — one, for 
example, strongly predicts non-metal 
behaviour, another metallic behaviour. 
But the algorithm decides which vector 
components to heed, rather than being 
instructed to be guided by, say, valency.

Nonetheless, the algorithm 
accurately identifies the family 
groupings familiar from the periodic 
table: the kinship of halogens or 
alkali metals, say. It discovers this 
periodicity by itself. What’s more, 
the atom properties turn out to 
effectively predict the characteristics 
of compounds, such as whether they 
are metals or insulators — and does 
so with lower mean errors than either 
empirical methods or machine-
learning techniques that assume some 
model of what matters about the atoms 
in question.

Typically, such AI-based methods 
look only for equilibrium phases. But 
some enticing states of matter are out of 
equilibrium. One such class is made up 
of phases characterized by many-body 
localization (MBL), where disorder 
frustrates equilibration. This can lead 
to unusual many-body effects, such 
as discrete-time-crystal behaviour5. 
Machine learning has already been 
applied to these phases6, but when 
dealing with relatively unfamiliar states 
there is no guarantee that we know 
what to look at a priori — what are,  
say, the relevant order parameters for 
phase boundaries?

Again, the machine-learning 
algorithm used by Venderley et al.2 
makes no prior assumptions about 
that. Using as input just the essentially 
neutral ‘entanglement spectra’ of the 

quantum-mechanical states for an 
idealized, disordered chain of spins 
(the canonical model for MBL phases), 
it outperforms conventional metrics 
for finding sharply defined phase 
boundaries.

While these results bode well for 
attempts to locate interesting and 
potentially useful new states of matter, 
they might also reasonably provoke 
some anxiety: when dealing with 
the complexities of multicomponent 
materials governed by subtle many-
body effects, can we be sure that 
our intuitive, physically transparent 
descriptors are going to be the ones 
that nature actually recognizes? ❐
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