Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins


Solid-state electronic spins are extensively studied in quantum information science, as their large magnetic moments offer fast operations for computing1 and communication2,3,4, and high sensitivity for sensing5. However, electronic spins are more sensitive to magnetic noise, but engineering of their spectroscopic properties, for example, using clock transitions and isotopic engineering, can yield remarkable spin coherence times, as for electronic spins in GaAs6, donors in silicon7,8,9,10,11 and vacancy centres in diamond12,13. Here we demonstrate simultaneously induced clock transitions for both microwave and optical domains in an isotopically purified 171Yb3+:Y2SiO5 crystal, reaching coherence times of greater than 100 μs and 1 ms in the optical and microwave domains, respectively. This effect is due to the highly anisotropic hyperfine interaction, which makes each electronic–nuclear state an entangled Bell state. Our results underline the potential of 171Yb3+:Y2SiO5 for quantum processing applications relying on both optical and spin manipulation, such as optical quantum memories4,14, microwave-to-optical quantum transducers15,16, and single-spin detection17, while they should also be observable in a range of different materials with anisotropic hyperfine interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Energy levels and absorption profile.
Fig. 2: Coherence enhancement under zero magnetic field.
Fig. 3: Low-magnetic-field-assisted spin coherence enhancement.


  1. 1.

    Wesenberg, J. H. et al. Quantum computing with an electron spin ensemble. Phys. Rev. Lett. 103, 070502 (2009).

    Article  Google Scholar 

  2. 2.

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  Google Scholar 

  3. 3.

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).

    Article  Google Scholar 

  4. 4.

    Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014).

    Article  Google Scholar 

  5. 5.

    Grinolds, M. S. et al. Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotech. 9, 279–284 (2014).

    Article  Google Scholar 

  6. 6.

    Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys. 7, 109–113 (2011).

    Article  Google Scholar 

  7. 7.

    George, R. E. et al. Electron spin coherence and electron nuclear double resonance of Bi donors in natural Si. Phys. Rev. Lett. 105, 067601 (2010).

    Article  Google Scholar 

  8. 8.

    Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012).

    Article  Google Scholar 

  9. 9.

    Wolfowicz, G. et al. Atomic clock transitions in silicon-based spin qubits. Nat. Nanotech. 8, 561–564 (2013).

    Article  Google Scholar 

  10. 10.

    Lo, C. C. et al. Hybrid optical–electrical detection of donor electron spins with bound excitons in silicon. Nat. Mater. 14, 490–494 (2015).

    Article  Google Scholar 

  11. 11.

    Morse, K. J. et al. A photonic platform for donor spin qubits in silicon. Sci. Adv. 3, e1700930 (2017).

    Article  Google Scholar 

  12. 12.

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009).

    Article  Google Scholar 

  13. 13.

    Sukachev, D. D. et al. Silicon-vacancy spin qubit in diamond: A quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 119, 223602 (2017).

    Article  Google Scholar 

  14. 14.

    Saglamyurek, E. et al. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photon. 9, 83–87 (2015).

    Article  Google Scholar 

  15. 15.

    Probst, S. et al. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. Phys. Rev. Lett. 110, 157001 (2013).

    Article  Google Scholar 

  16. 16.

    Fernandez-Gonzalvo, X., Chen, Y.-H., Yin, C., Rogge, S. & Longdell, J. J. Coherent frequency up-conversion of microwaves to the optical telecommunications band in Er:YSO crystal. Phys. Rev. A 92, 062313 (2015).

    Article  Google Scholar 

  17. 17.

    Bienfait, A. et al. Reaching the quantum limit of sensitivity in electron spin resonance. Nat. Nanotech. 11, 253–257 (2016).

    Article  Google Scholar 

  18. 18.

    Fraval, E., Sellars, M. J. & Longdell, J. J. Method of extending hyperfine coherence times in Pr3+:Y2SiO5. Phys. Rev. Lett. 92, 077601 (2004).

    Article  Google Scholar 

  19. 19.

    Lovrić, M. et al. Hyperfine characterization and spin coherence lifetime extension in Pr3+:La2(WO4)3. Phys. Rev. B 84, 104417 (2011).

    Article  Google Scholar 

  20. 20.

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  Google Scholar 

  21. 21.

    Bertaina, S. et al. Rare-earth solid-state qubits. Nat. Nanotech. 2, 39–42 (2007).

    Article  Google Scholar 

  22. 22.

    Wolfowicz, G. et al. Coherent storage of microwave excitations in rare-earth nuclear spins. Phys. Rev. Lett. 114, 170503 (2015).

    Article  Google Scholar 

  23. 23.

    Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).

    Google Scholar 

  24. 24.

    Thiel, C., Böttger, T. & Cone, R. Rare-earth-doped materials for applications in quantum information storage and signal processing. J. Lumin. 131, 353–361 (2011).

    Article  Google Scholar 

  25. 25.

    Sun, Y., Thiel, C. W., Cone, R. L., Equall, R. W. & Hutcheson, R. L. Recent progress in developing new rare earth materials for hole burning and coherent transient applications. J. Lumin. 98, 281–287 (2002).

    Article  Google Scholar 

  26. 26.

    Böttger, T., Thiel, C. W., Cone, R. L., Sun, Y. & Faraon, A. Optical spectroscopy and decoherence sttudies of Yb3+:YAG at 968 nm. Phys. Rev. B 94, 045134 (2016).

    Article  Google Scholar 

  27. 27.

    Welinski, S., Ferrier, A., Afzelius, M. & Goldner, P. High-resolution optical spectroscopy and magnetic properties of Yb3+ in Y2SiO5. Phys. Rev. B 94, 155116 (2016).

    Article  Google Scholar 

  28. 28.

    Tiranov, A. et al. Spectroscopic study of hyperfine properties in 171Yb3+:Y2SiO5. Preprint at (2017).

  29. 29.

    Lim, H.-J., Welinski, S., Ferrier, A., Goldner, P. & Morton, J. J. L. Coherent spin dynamics of ytterbium ions in yttrium orthosilicate. Phys. Rev. B 97, 064409 (2018).

    Article  Google Scholar 

  30. 30.

    Dolde, F. et al. Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011).

    Article  Google Scholar 

  31. 31.

    Jamonneau, P. et al. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond. Phys. Rev. B 93, 024305 (2016).

    Article  Google Scholar 

  32. 32.

    Cruzeiro, E. Z. et al. Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate. Phys. Rev. B 95, 205119 (2017).

    Article  Google Scholar 

  33. 33.

    Rakhmatullin, R. M. et al. Coherent spin manipulations in Yb3+:CaWO4 at X- and W-band EPR frequencies. Phys. Rev. B 79, 172408 (2009).

    Article  Google Scholar 

  34. 34.

    Rakonjac, J. V., Chen, Y.-H., Horvath, S. P. & Longdell, J. J. Spin echoes in the ground and an optically excited state of 167Er3+:Y2SO5 at near-zero magnetic fields using Raman heterodyne spectroscopy. Preprint at (2018).

  35. 35.

    Zadrozny, J. M., Niklas, J., Poluektov, O. G., & Freedman, D. E. Millisecond coherence time in a tunable molecular electronic spin qubit. ACS Cent. Sci. 1, 488–492 (2015).

    Article  Google Scholar 

  36. 36.

    Shiddiq, M. et al. Enhancing coherence in molecular spin qubits via atomic clock transitions. Nature 531, 348–351 (2016).

    Article  Google Scholar 

Download references


We acknowledge funding from the Swiss FNS NCCR programme Quantum Science Technology (QSIT) and FNS research project no. 172590, EUs H2020 programme under the Marie Skłodowska-Curie project QCALL (GA 675662), EUs FP7 programme under the ERC AdG project MEC (GA 339198), ANR under grant agreement no. 145-CE26-0037-01 (DISCRYS) and NanoK project RECTUS and the IMTO Cancer AVIESAN (Cancer Plan, C16027HS, MALT).

Author information




S.W., A.F. and P.G. grew the crystal sample, measured and analysed the absorption spectrum. A.T. and M.A. conceived and planned the optical and spin echo experiments, which were mainly carried out by A.O. and A.T. with contributions from S.W. and M.A. The theoretical model was developed by F.F, A.T, S.W., P.G. and M.A. The manuscript was mainly written by A.O., A.T. and M.A., with contributions from all the authors. N.G. and M.A. provided overall oversight of the project.

Corresponding author

Correspondence to Mikael Afzelius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Supplementary Figures 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortu, A., Tiranov, A., Welinski, S. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nature Mater 17, 671–675 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing