Article | Published:

Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal


Topological semimetals host electronic structures with several band-contact points or lines and are generally expected to exhibit strong topological responses. Up to now, most work has been limited to non-magnetic materials and the interplay between topology and magnetism in this class of quantum materials has been largely unexplored. Here we utilize theoretical calculations, magnetotransport and angle-resolved photoemission spectroscopy to propose Fe3GeTe2, a van der Waals material, as a candidate ferromagnetic (FM) nodal line semimetal. We find that the spin degree of freedom is fully quenched by the large FM polarization, but the line degeneracy is protected by crystalline symmetries that connect two orbitals in adjacent layers. This orbital-driven nodal line is tunable by spin orientation due to spin–orbit coupling and produces a large Berry curvature, which leads to a large anomalous Hall current, angle and factor. These results demonstrate that FM topological semimetals hold significant potential for spin- and orbital-dependent electronic functionalities.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Chiu, C. K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 1–63 (2016).

  2. 2.

    Bansil, A., Lin, H. & Das, T. Colloquium: topological band theory. Rev. Mod. Phys. 88, 1–37 (2016).

  3. 3.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  4. 4.

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  5. 5.

    Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

  6. 6.

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  7. 7.

    Yang, B.-J., Morimoto, T. & Furusaki, A. Topological charges of three dimensional Dirac semimetals with rotation symmetry. Phys. Rev. B 92, 165120 (2015).

  8. 8.

    Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

  9. 9.

    Fang, C., Chen, Y., Kee, H. Y. & Fu, L. Topological nodal line semimetals with and without spin–orbital coupling. Phys. Rev. B 92, 081201 (2015).

  10. 10.

    Yang, B.-J., Bojesen, T. A., Morimoto, T. & Furusaki, A. Topological semimetals protected by off-centered symmetries in nonsymmorphic crystals. Phys. Rev. B 95, 075135 (2017).

  11. 11.

    Fang, C., Weng, H., Dai, X. & Fang, Z. Topological nodal line semimetals. Chin. Phys. B 25, 117106 (2016).

  12. 12.

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

  13. 13.

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  14. 14.

    Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

  15. 15.

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

  16. 16.

    Shin, D. et al. Violation of Ohm’s law in a Weyl metal. Nat. Mater. 16, 1096–1099 (2017).

  17. 17.

    Chang, G. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X = Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

  18. 18.

    Chang, G. et al. Magnetic and noncentrosymmetric Weyl fermion semimetals in the RAlGe family of compounds (R = rare earth). Phys. Rev. B 97, 041108(R) (2018).

  19. 19.

    Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

  20. 20.

    Ueda, K. et al. Anomalous domain-wall conductance in pyrochlore-type Nd2Ir2O7 on the verge of the metal–insulator transition. Phys. Rev. B 89, 075127 (2014).

  21. 21.

    Chen, B. et al. Magnetic properties of layered Itinerant electron ferromagnet Fe3GeTe2. J. Phys. Soc. Jpn 82, 124711 (2013).

  22. 22.

    May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys. Rev. B 93, 014411 (2016).

  23. 23.

    Tomczak, J. M., van Schilfgaarde, M. & Kotliar, G. Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses. Phys. Rev. Lett. 109, 237010 (2012).

  24. 24.

    Zhu, J.-X. et al. Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe2. Phys. Rev. B 93, 144404 (2016).

  25. 25.

    Onoda, S., Sugimoto, N. & Nagaosa, N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B 77, 165103 (2008).

  26. 26.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

  27. 27.

    Lee, M., Onose, Y., Tokura, Y. & Ong, N. P. Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys. Rev. B 75, 172403 (2007).

  28. 28.

    Checkelsky, J. G., Lee, M., Morosan, E., Cava, R. J. & Ong, N. P. Anomalous Hall effect and magnetoresistance in the layered ferromagnet Fe1/4TaS2. Phys. Rev. B 77, 014433 (2008).

  29. 29.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

  30. 30.

    Suzuki, T. et al. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 12, 1119–1123 (2016).

  31. 31.

    Sangiao, S. et al. Anomalous Hall effect in Fe(001) epitaxial thin films over a wide range in conductivity. Phys. Rev. B 79, 014431 (2009).

  32. 32.

    Fang, Z. et al. The anomalous Hall effect and magnetic monopoles in momentum space. Science 302, 92–95 (2003).

  33. 33.

    Lee, W.-L., Watauchi, S., Miller, V. L., Cava, R. J. & Ong, N. P. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4−xBrx. Science 303, 1647–1649 (2004).

  34. 34.

    Surgers, C., Fischer, G., Winkel, P. & Lohneysen, H. V. Magnetotransport in ferromagnetic Mn5Ge3, Mn5Ge3C0.8, and Mn5Si3C0.8 thin films. Phys. Rev. B 90, 104421 (2014).

  35. 35.

    Baily, S. A. & Salamon, M. B. Berry-phase contribution to the anomalous Hall effect in gadolinium. Phys. Rev. B 71, 104407 (2005).

  36. 36.

    Iguchi, S., Hanasaki, N. & Tokura, Y. Scaling of anomalous Hall resistivity in Nd2(Mo1−xNbx)2O7 with spin chirality. Phys. Rev. Lett. 99, 077202 (2007).

  37. 37.

    Onose, Y. et al. Doping dependence of the anomalous Hall effect in La1−xSrxCoO3. Phys. Rev. B 73, 174421 (2006).

  38. 38.

    Wang, Q., Sun, S., Zhang, X., Pang, F. & Lei, H. Anomalous Hall effect in a ferromagnetic Fe3Sn2 single crystal with a geometrically frustrated Fe bilayer Kagome lattice. Phys. Rev. B 94, 075135 (2016).

  39. 39.

    Jan, J.-P. & Gijsman, H. M. L’effet Hall du fer et du nickel aux basses temperatures. Physica 18, 339–355 (1952).

  40. 40.

    Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Technical University of Wien, 2001).

  41. 41.

    Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 75, 1743 (1999).

  42. 42.

    Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

  43. 43.

    Haule, K., Yee, C. H. & Kim, K. Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).

  44. 44.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  45. 45.

    Haule, K. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75, 155113 (2007).

Download references


The authors thank H. W. Lee, S. Wimmer and M. H. Lee for fruitful discussion. This work was supported by the Institute for Basic Science (IBS) through the Center for Artificial Low Dimensional Electronic Systems (no. IBS-R014-D1), by POSCO through the Green Science programme, and also by the National Research Foundation (NRF) of Korea through the SRC (no. 2011-0030785) and the Max Planck-POSTECH Center for Complex Phase Materials in Korea (MPK) (no. 2016K1A4A4A01922028). B.-J.Y was supported by the Institute for Basic Science (IBS) in Korea (no. IBS-R009-D1), NRF through Basic Science Research Programs (no. 0426-20170012 and no. 0426-20180011) and the POSCO Science Fellowship of POSCO TJ Park Foundation (no. 0426-20180002). K.K. was supported by NRF through Basic Research Programs (no. 2016R1D1A1B02008461 and no. NRF-2017M2A2A6A01071297), KISTI (no. KSC-2015-C3-068) and MPK (no. 2016K1A4A4A01922028). E.L. and C.K. were supported by IBS (no. IBS-R009-D1 and no. IBS-R009-G2). W.K. was supported by NRF (no. 2015-001948) and Y.J.J. was also supported by NRF (no. 2016R1A2B4016656).

Author information

K.K., B.G.J., J.H.S. and B.I.M. performed the band-structure calculations. E.L. and B.-J.Y. did the theoretical analysis. J.S. and J.S.K. conceived the experiments. J.S. and J.M.O. synthesized the samples. J.S., J.M.O., Y.J. and W.K. carried out the transport and the magnetization measurements. K.-T.K, B.S.K. and C.K. performed the ARPES experiments and analysed the results. J.L. and H.W.Y. contributed to the STM measurements and the analysis. K.K., J.S., B.-J.Y. and J.S.K. co-wrote the manuscript. All the authors discussed the results and commented on the paper.

Competing interests

The authors declare no competing interests.

Correspondence to Bohm-Jung Yang or Jun Sung Kim.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Supplementary Figures 1–13, Supplementary Tables 1–3, Supplementary References 1–33

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Lattice structure of Fe3GeTe2 and the mechanism for the two-fold degeneracy at the K and K′ points in the BZ.
Fig. 2: Nodal-line band crossing and its large Berry curvature in Fe3GeTe2.
Fig. 3: ARPES band mapping compared to DFT and DMFT band calculations for Fe3GeTe2.
Fig. 4: AHE of Fe3GeTe2 single crystals.
Fig. 5: Anomalous Hall angle and anomalous Hall factor of Fe3−xGeTe2 and metallic ferromagnets.