Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals

An Author Correction to this article was published on 31 July 2019

This article has been updated

Abstract

Degenerately doped semiconductor nanocrystals (NCs) exhibit a localized surface plasmon resonance (LSPR) in the infrared range of the electromagnetic spectrum. Unlike metals, semiconductor NCs offer tunable LSPR characteristics enabled by doping, or via electrochemical or photochemical charging. Tuning plasmonic properties through carrier density modulation suggests potential applications in smart optoelectronics, catalysis and sensing. Here, we elucidate fundamental aspects of LSPR modulation through dynamic carrier density tuning in Sn-doped In2O3 (Sn:In2O3) NCs. Monodisperse Sn:In2O3 NCs with various doping levels and sizes were synthesized and assembled in uniform films. NC films were then charged in an in situ electrochemical cell and the LSPR modulation spectra were monitored. Based on spectral shifts and intensity modulation of the LSPR, combined with optical modelling, it was found that often-neglected semiconductor properties, specifically band structure modification due to doping and surface states, strongly affect LSPR modulation. Fermi level pinning by surface defect states creates a surface depletion layer that alters the LSPR properties; it determines the extent of LSPR frequency modulation, diminishes the expected near-field enhancement, and strongly reduces sensitivity of the LSPR to the surroundings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LSPR in semiconductor NCs.
Fig. 2: Electrochemical LSPR modulation.
Fig. 3: Effect of NC size and doping concentration on electrochemical LSPR modulation.
Fig. 4: Optical modelling of electrochemical LSPR modulation.
Fig. 5: Modelled size and doping effects on the ΔωLSPR of an isolated NC.
Fig. 6: NC plasmon sensitivity.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors on reasonable request, see author contributions for specific data sets.

Change history

  • 31 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Agrawal, A., Johns, R. W. & Milliron, D. J. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 47, 1–31 (2017).

    Article  CAS  Google Scholar 

  2. Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011).

    Article  CAS  Google Scholar 

  3. Mattox, T. M. et al. Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv. Mater. 27, 5830–5837 (2015).

    Article  CAS  Google Scholar 

  4. Manthiram, K. & Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134, 3995–3998 (2012).

    Article  CAS  Google Scholar 

  5. Runnerstrom, E. L. et al. Defect engineering in plasmonic metal oxide nanocrystals. Nano Lett. 16, 3390–3398 (2016).

    Article  CAS  Google Scholar 

  6. Bühler, G., Thölmann, D. & Feldmann, C. One-pot synthesis of highly conductive indium tin oxide nanocrystals. Adv. Mater. 19, 2224–2227 (2007).

    Article  Google Scholar 

  7. Gordon, T. R. et al. Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett. 13, 2857–2863 (2013).

    Article  CAS  Google Scholar 

  8. Schimpf, A. M., Ochsenbein, S. T., Buonsanti, R., Milliron, D. J. & Gamelin, D. R. Comparison of extra electrons in colloidal n-type Al3+-doped and photochemically reduced ZnO nanocrystals. Chem. Commun. 48, 9352–9354 (2012).

    Article  CAS  Google Scholar 

  9. Faucheaux, J. A. & Jain, P. K. Plasmons in photocharged ZnO nanocrystals revealing the nature of charge dynamics. J. Phys. Chem. Lett. 4, 3024–3030 (2013).

    Article  CAS  Google Scholar 

  10. Garcia, G. et al. Near-infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater. 1, 215–220 (2013).

    Article  Google Scholar 

  11. Kim, J. et al. Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15, 5574–5579 (2015).

    Article  CAS  Google Scholar 

  12. zum Felde, U., Haase, M. & Weller, H. Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104, 9388–9395 (2000).

    Article  Google Scholar 

  13. Wang, Y., Runnerstrom, E. L. & Milliron, D. J. Switchable materials for smart windows. Annu. Rev. Chem. Biomol. Eng. 7, 283–304 (2016).

    Article  Google Scholar 

  14. Garcia, G. et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 11, 4415–4420 (2011).

    Article  CAS  Google Scholar 

  15. Lee, H. W. et al. Nanoscale conducting oxide PlasMOStor. Nano Lett. 14, 6463–6468 (2014).

    Article  CAS  Google Scholar 

  16. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  17. Cheng, H., Qian, X., Kuwahara, Y., Mori, K. & Yamashita, H. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv. Mater. 27, 4616–4621 (2015).

    Article  CAS  Google Scholar 

  18. Mendelsberg, R. J., Garcia, G. & Milliron, D. J. Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. J. Appl. Phys. 111, 063515 (2012).

    Article  Google Scholar 

  19. Zhu, Y., Mendelsberg, R. J., Zhu, J., Han, J. & Anders, A. Structural, optical, and electrical properties of indium-doped cadmium oxide films prepared by pulsed filtered cathodic arc deposition. J. Mater. Sci. 48, 3789–3797 (2013).

    Article  CAS  Google Scholar 

  20. Mendelsberg, R. J., Zhu, Y. & Anders, A. Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory. J. Phys. Appl. Phys. 45, 425302 (2012).

    Article  Google Scholar 

  21. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  Google Scholar 

  22. Kilina, S. V., Tamukong, P. K. & Kilin, D. S. Surface chemistry of semiconducting quantum dots: Theoretical perspectives. Acc. Chem. Res. 49, 2127–2135 (2016).

    Article  CAS  Google Scholar 

  23. Houtepen, A. J., Hens, Z., Owen, J. S. & Infante, I. On the origin of surface traps in colloidal II–VI semiconductor nanocrystals. Chem. Mater. 29, 752–761 (2017).

    Article  CAS  Google Scholar 

  24. Bard, A. J., Bocarsly, A. B., Fan, F. R. F., Walton, E. G. & Wrighton, M. S. The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 102, 3671–3677 (1980).

    Article  CAS  Google Scholar 

  25. Carroll, G. M., Schimpf, A. M., Tsui, E. Y. & Gamelin, D. R. Redox potentials of colloidal n-type ZnO nanocrystals: Effects of confinement, electron density, and Fermi-level pinning by aldehyde hydrogenation. J. Am. Chem. Soc. 137, 11163–11169 (2015).

    Article  CAS  Google Scholar 

  26. Gassenbauer, Y. et al. Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3. Phys. Rev. B 73, 245312 (2006).

    Article  Google Scholar 

  27. Li, W. et al. CuTe nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 135, 7098–7101 (2013).

    Article  CAS  Google Scholar 

  28. Kriegel, I. et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 134, 1583–1590 (2012).

    Article  CAS  Google Scholar 

  29. Mendelsberg, R. J. et al. Dispersible plasmonic doped metal oxide nanocrystal sensors that optically track redox reactions in aqueous media with single-electron sensitivity. Adv. Opt. Mater. 3, 1293–1300 (2015).

    Article  CAS  Google Scholar 

  30. Abb, M., Wang, Y., Papasimakis, N., de Groot, C. H. & Muskens, O. L. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett. 14, 346–352 (2014).

    Article  CAS  Google Scholar 

  31. Schimpf, A. M., Lounis, S. D., Runnerstrom, E. L. & Milliron, D. J. & Gamelin, D. R. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals. J. Am. Chem. Soc. 137, 518–524 (2015).

    Article  CAS  Google Scholar 

  32. Boschloo, G. & Fitzmaurice, D. Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes. J. Phys. Chem. B 103, 3093–3098 (1999).

    Article  CAS  Google Scholar 

  33. Mattox, T. M., Agrawal, A. & Milliron, D. J. Low temperature synthesis and surface plasmon resonance of colloidal lanthanum hexaboride (LaB6) nanocrystals. Chem. Mater. 27, 6620–6624 (2015).

    Article  CAS  Google Scholar 

  34. Llordes, A. et al. Polyoxometalates and colloidal nanocrystals as building blocks for metal oxide nanocomposite films. J. Mater. Chem. 21, 11631–11638 (2011).

    Article  CAS  Google Scholar 

  35. Jansons, A. W. & Hutchison, J. E. Continuous growth of metal oxide nanocrystals: Enhanced control of nanocrystal size and radial dopant distribution. ACS Nano 10, 6942–6951 (2016).

    Article  CAS  Google Scholar 

  36. Zhang, H., Kulkarni, V., Prodan, E., Nordlander, P. & Govorov, A. O. Theory of quantum plasmon resonances in doped semiconductor nanocrystals. J. Phys. Chem. C. 118, 16035–16042 (2014).

    Article  CAS  Google Scholar 

  37. Jain, P. K. Plasmon-in-a-box: On the physical nature of few-carrier plasmon resonances. J. Phys. Chem. Lett. 5, 3112–3119 (2014).

    Article  CAS  Google Scholar 

  38. Berggren, K.-F. & Sernelius, B. E. Band-gap narrowing in heavily doped many-valley semiconductors. Phys. Rev. B 24, 1971–1986 (1981).

    Article  CAS  Google Scholar 

  39. Hamberg, I., Granqvist, C. G., Berggren, K.-F., Sernelius, B. E. & Engström, L. Band-gap widening in heavily Sn-doped In2O3. Phys. Rev. B 30, 3240–3249 (1984).

    Article  CAS  Google Scholar 

  40. Haase, M., Weller, H. & Henglein, A. Photochemistry and radiation chemistry of colloidal semiconductors. 23. Electron storage on zinc oxide particles and size quantization. J. Phys. Chem. 92, 482–487 (1988).

    Article  CAS  Google Scholar 

  41. Seiwatz, R. & Green, M. Space charge calculations for semiconductors. J. Appl. Phys. 29, 1034–1040 (1958).

    Article  CAS  Google Scholar 

  42. Templeton, A. C., Pietron, J. J., Murray, R. W. & Mulvaney, P. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B 104, 564–570 (2000).

    Article  CAS  Google Scholar 

  43. Kim, J., Agrawal, A., Krieg, F., Bergerud, A. & Milliron, D. J. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett. 16, 3879–3884 (2016).

    Article  CAS  Google Scholar 

  44. Agrawal, A., Kriegel, I. & Milliron, D. J. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C. 119, 6227–6238 (2015).

    Article  CAS  Google Scholar 

  45. Schimpf, A. M., Knowles, K. E., Carroll, G. M. & Gamelin, D. R. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. Acc. Chem. Res. 48, 1929–1937 (2015).

    Article  CAS  Google Scholar 

  46. Valdez, C. N., Braten, M., Soria, A., Gamelin, D. R. & Mayer, J. M. Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals. J. Am. Chem. Soc. 135, 8492–8495 (2013).

    Article  CAS  Google Scholar 

  47. Ephraim, J., Lanigan, D., Staller, C., Milliron, D. J. & Thimsen, E. Transparent conductive oxide nanocrystals coated with insulators by atomic layer deposition. Chem. Mater. 28, 5549–5553 (2016).

    Article  CAS  Google Scholar 

  48. Furube, A., Yoshinaga, T., Kanehara, M., Eguchi, M. & Teranishi, T. Electric-field enhancement inducing near-infrared two-photon absorption in an indium–tin oxide nanoparticle film. Angew. Chem. Int. Ed. 51, 2640–2642 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (NSF, CHE-1609656) and the Welch Foundation (F-1848).

Author information

Authors and Affiliations

Authors

Contributions

O.Z. and A.A. contributed equally to this work. O.Z. synthesized the materials, fabricated devices and performed experimental FTIR spectroscopy, A.A. performed simulations, A.S. synthesized Sn:In2O3 nanocrystals, L.G. performed analysis of TEM images, C.J.D. provided critical conceptual inputs, C.M.S. performed ICP, D.J.M. provided overall guidance, and O.Z., A.A. and D.J.M. wrote the manuscript with critical input from all the authors.

Corresponding author

Correspondence to Delia J. Milliron.

Ethics declarations

Competing interests

D.J.M. has a financial interest in Heliotrope Technologies, a company pursuing commercialization of electrochromic devices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Supplementary Figures 1–22, Supplementary Table 1, Supplementary References 1–16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zandi, O., Agrawal, A., Shearer, A.B. et al. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nature Mater 17, 710–717 (2018). https://doi.org/10.1038/s41563-018-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0130-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing