Long-range symmetry breaking in embedded ferroelectrics

Abstract

The characteristic functionality of ferroelectric materials is due to the symmetry of their crystalline structure. As such, ferroelectrics lend themselves to design approaches that manipulate this structural symmetry by introducing extrinsic strain. Using in situ dark-field X-ray microscopy to map lattice distortions around deeply embedded domain walls and grain boundaries in BaTiO3, we reveal that symmetry-breaking strain fields extend up to several micrometres from domain walls. As this exceeds the average domain width, no part of the material is elastically relaxed, and symmetry is universally broken. Such extrinsic strains are pivotal in defining the local properties and self-organization of embedded domain walls, and must be accounted for by emerging computational approaches to material design.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conventional X-ray diffraction measurement of a single embedded crystallite of BaTiO3.
Fig. 2: Cross-sectional dark-field X-ray microscopy maps of the embedded BaTiO3 grain.
Fig. 3: Local lattice distortions around embedded structural interfaces.
Fig. 4: Changes to the domain topology and orientation distribution in the embedded BaTiO3 grain during the in situ application of a unipolar electric field cycle along the <100> direction.

References

  1. 1.

    Freedman, D. A., Roundy, D. & Arias, T. A. Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain. Phys. Rev. B 80, 064108 (2009).

    Article  Google Scholar 

  2. 2.

    Chu, M.-W. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87–90 (2004).

    Article  Google Scholar 

  3. 3.

    Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  4. 4.

    Choudhury, S., Li, Y. L., Krill, C. III & Chen, L.-Q. Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations. Acta Mater. 55, 1415–1426 (2007).

    Article  Google Scholar 

  5. 5.

    Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  Google Scholar 

  6. 6.

    Budimir, M., Damjanovic, D. & Setter, N. Enhancement of the piezoelectric response of tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: A free-energy approach. Phys. Rev. B 72, 064107 (2005).

    Article  Google Scholar 

  7. 7.

    Noheda, B. et al. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys. Rev. Lett. 86, 3891–3894 (2001).

    Article  Google Scholar 

  8. 8.

    Tagantsev, A. K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986).

    Article  Google Scholar 

  9. 9.

    Chu, K. et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat. Nanotech. 10, 972–979 (2015).

    Article  Google Scholar 

  10. 10.

    Goncalves-Ferreira, L., Redfern, S. A. T., Artacho, E., Salje, E. & Lee, W. T. Trapping of oxygen vacancies in the twin walls of perovskite. Phys. Rev. B 81, 024109 (2010).

    Article  Google Scholar 

  11. 11.

    Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    Article  Google Scholar 

  12. 12.

    Kalinin, S. V. & Bonnel, D. A. Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002).

    Article  Google Scholar 

  13. 13.

    Farooq, M. U. et al. Using EBSD and TEM-Kikuchi patterns to study local crystallography at the domain boundaries of lead zirconate titanate. J. Microsc. 320, 445–454 (2008).

    Article  Google Scholar 

  14. 14.

    Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Spinger, NewYork, NY, 2010).

  15. 15.

    Uchino, K. Ferroelectric Devices (CRC Press, Boca Raton, FL, 2009).

  16. 16.

    Hruszkewycz, S. O. et al. Imaging local polarization in ferroelectric thin films by coherent X-ray Bragg projection ptychography. Phys. Rev. Lett. 110, 177601 (2013).

    Article  Google Scholar 

  17. 17.

    Lummen, T. T. A. et al. Thermotropic phase boundaries in classic ferroelectrics. Nat. Commun. 5, 3172 (2014).

    Article  Google Scholar 

  18. 18.

    Rogan, R. C., Tamura, N., Swift, G. A. & Üstündag, E. Direct measurement of triaxial strain fields around ferroelectric domains using X-ray microdiffraction. Nat. Mater. 2, 379–381 (2003).

    Article  Google Scholar 

  19. 19.

    Simons, H. et al. Dark-field X-ray microscopy for multiscale structural characterization. Nat. Commun. 6, 6098 (2015).

    Article  Google Scholar 

  20. 20.

    Cayron, C. Quantification of multiple twinning in face centred cubic materials. Acta Mater. 559, 252–262 (2011).

    Article  Google Scholar 

  21. 21.

    Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    Article  Google Scholar 

  22. 22.

    Locherer, K. R., Chrosch, J. & Salje, E. K. H. Diffuse X-ray scattering in WO3. Phase Transit. 67, 51–63 (1998).

    Article  Google Scholar 

  23. 23.

    Simons, H., Jakobsen, A. C., Ahl, S. R., Detlefs, C. & Poulsen, H. F. Multiscale 3D characterization with dark-field X-ray microscopy. MRS Bull. 41, 454–459 (2016).

    Article  Google Scholar 

  24. 24.

    Arlt, G. The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 104, 217–227 (1990).

    Article  Google Scholar 

  25. 25.

    Salje, E. K. H., Li, S., Stengel, M., Gumpsch, P. & Ding, X. Flexoelectricity and the polarity of complex ferroelastic twin patterns. Phys. Rev. B 94, 024114 (2016).

    Article  Google Scholar 

  26. 26.

    Ahluwalia, R. et al. Manipulating ferroelectric domains in nanostructures under electron beams. Phys. Rev. Lett. 111, 165702 (2013).

    Article  Google Scholar 

  27. 27.

    Novak, J., Bismayer, U. & Salje, E. K. H. Simulated equilibrium shapes of ferroelastic needle domains. J. Phys. Condens. Matter 14, 657 (2002).

    Article  Google Scholar 

  28. 28.

    Harrison, R. J. & Salje, E. K. H. Ferroic switching, avalanches, and the Larkin length: Needle domains in LaAlO3. Appl. Phys. Lett. 99, 151915 (2011).

    Article  Google Scholar 

  29. 29.

    Cheng, C. E. et al. Revealing the flexoelectricity in the mixed-phase regions of epitaxial BiFeO3 thin films. Sci. Rep. 5, 8091 (2005).

    Article  Google Scholar 

  30. 30.

    Zhang, R., Jiang, B. & Cao, W. Orientation dependence of piezoelectric properties of single domain 0.67(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals. Appl. Phys. Lett. 82, 3737–3739 (2003).

    Article  Google Scholar 

  31. 31.

    Kwei, G. H., Lawson, A. C., Billinge, S. J. L. & Cheong, S. W. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993).

    Article  Google Scholar 

  32. 32.

    Daniels, J. E. et al. Heterogeneous grain-scale response in ferroic polycrystals under electric field. Sci. Rep. 6, 22820 (2016).

    Article  Google Scholar 

  33. 33.

    Marincel, D. M. et al. Influence of a single grain boundary on domain wall motion in ferroelectrics. Adv. Funct. Mater. 24, 1409–1417 (2014).

    Article  Google Scholar 

  34. 34.

    Bintachitt, P., Trolier-McKinstry, S., Seal, K., Jesse, S. & Kalinin, S. V. Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. Appl. Phys. Lett. 94, 042906 (2009).

    Article  Google Scholar 

  35. 35.

    Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    Article  Google Scholar 

  36. 36.

    Aschauer, U., Pfenniger, R., Selbach, S. M., Grande, T. & Spaldin, N. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys. Rev. B 88, 054111 (2013).

    Article  Google Scholar 

  37. 37.

    Daniel, L., Hall, D. A. & Withers, P. J. A multiscale model for reversible ferroelectric behavior of polycrystalline ceramics. J. Mech. Mater. 71, 85–100 (2014).

    Article  Google Scholar 

  38. 38.

    Horstmeyer, M.F. Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design with Science (Wiley, Hoboken, NJ, 2012)

  39. 39.

    Eriksson, M., van der Veen, J. F. & Quitmann, C. Diffraction-limited storage rings. J., Synchrotron Radiat. 21, 837–842 (2014).

    Article  Google Scholar 

  40. 40.

    Vaughn, G. B. M. et al. X-ray transfocators: focusing devices based on compound refractive lenses. J. Synchrotron Rad. 18, 125–133 (2011).

    Article  Google Scholar 

  41. 41.

    Stöhr, F. et al. Sacrificial structures for deep reactive ion etching of high-aspect ratio kinoform silicon x-ray lenses. J. Vac. Sci. Technol. B 33, 062001 (2015).

    Article  Google Scholar 

  42. 42.

    Poulsen, H. F. et al. X-ray diffraction microscopy based on refractive optics. J. Appl. Cryst. 50, 1441–1456 (2017).

    Article  Google Scholar 

  43. 43.

    Maranganti, R. & Sharma, P. Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys. Rev. B. 80, 054109 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the European Synchrotron for providing beamtime at ID06, and Danscatt for financial assistance related thereto. This work is supported by the ERC Advanced grant ‘d-TXM’ (291321). In addition, H.S. and A.B.H. are supported by individual postdoc grants from the Independent Research Fund Denmark (DFF–4093-00296 and DFF–6111-00440). The work of D.D. has been supported by the Swiss National Science Foundation (grant no. 200021-159603), while J.E.D. acknowledges financial support from the ARC Discovery Projects DP120103968 and DP130100415. The silicon compound refractive lenses used in the experiment were manufactured at DTU Danchip, National Center for Micro- and Nanofabrication.

Author information

Affiliations

Authors

Contributions

A.B.H. and H.S. prepared the samples. H.S., A.C.J., C.D. and M.M. performed the experiments. F.S. developed the X-ray optics for the experiment. S.S. developed the noise-reduction algorithm used in the analysis. H.S. designed the experiment with D.D. and J.E.D. H.S. performed the analysis, then interpreted the data with D.D., J.E.D. and H.F.P. H.S. wrote the article and all authors contributed and commented on the text.

Corresponding author

Correspondence to Hugh Simons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video Captions 1–3, Supplementary Figures 1–2

Supplementary Video 1

Dark-field X-ray microscopy intensity images showing the evolution of a group of domains at a single position in reciprocal space (that is, a single lattice orientation and strain) during in situ electric field application from 0 to 472 V mm–1. Local changes in the observed intensity are due to domain entering and exiting the Bragg condition as their lattice orientation and strain locally changes in response to the applied electric field. The image exposure time is 1 second.

Supplementary Video 2

As above, but during in situ electric field application from 472 V mm–1 to 944 V mm–1. Note the inhomogeneous switching event between 33 and 38 seconds. The image exposure time is 1 second.

Supplementary Video 3

As above, but during the reduction of the in situ electric field from 944 V mm–1 to 0 V mm–1. Note the relatively constant process of domain back-switching during the process. The image exposure time is 1 second.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simons, H., Haugen, A.B., Jakobsen, A.C. et al. Long-range symmetry breaking in embedded ferroelectrics. Nature Mater 17, 814–819 (2018). https://doi.org/10.1038/s41563-018-0116-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing