The relation of local order to material properties in relaxor ferroelectrics

Abstract

Correlating electromechanical and dielectric properties with nanometre-scale order is the defining challenge for the development of piezoelectric oxides. Current lead (Pb)-based relaxor ferroelectrics can serve as model systems with which to unravel these correlations, but the nature of the local order and its relation to material properties remains controversial. Here we employ recent advances in diffuse scattering instrumentation to investigate crystals that span the phase diagram of PbMg1/3Nb2/3O3-xPbTiO3 (PMN-xPT) and identify four forms of local order. From the compositional dependence, we resolve the coupling of each form to the dielectric and electromechanical properties observed. We show that relaxor behaviour does not correlate simply with ferroic diffuse scattering; instead, it results from a competition between local antiferroelectric correlations, seeded by chemical short-range order, and local ferroic order. The ferroic diffuse scattering is strongest where piezoelectricity is maximal and displays previously unrecognized modulations caused by anion displacements. Our observations provide new guidelines for evaluating displacive models and hence the piezoelectric properties of environmentally friendly next-generation materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Compositional dependence of structure, bulk properties and sources of diffuse scattering of PMN-xPT.
Fig. 2: Reciprocal space maps of neutron scattering intensities measured on the Corelli instrument at 6 K.
Fig. 3: Comparison of X-ray and neutron diffuse scattering.
Fig. 4: Compositional dependence of ‘butterfly’ diffuse scattering.
Fig. 5: Compositional dependence of zone boundary diffuse scattering.

References

  1. 1.

    Burns, G. & Dacol, F. H. Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 48, 853–856 (1983).

    Article  Google Scholar 

  2. 2.

    Xu, G. Probing local polar structures in PZN-xPT and PMN-xPT relaxor ferroelectrics with neutron and x-ray scattering. J. Phys. Conf. Ser. 320, 012081 (2011).

    Article  Google Scholar 

  3. 3.

    Gehring, P. M. Neutron diffuse scattering in lead-based relaxor ferroelectrics and its relationship to the ultra-high piezoelectricity. J. Adv. Dielectr. 2, 1241005 (2012).

    Article  Google Scholar 

  4. 4.

    Westphal, V., Kleeman, W. & Glinchuk, M. D. Diffuse phase transitions and random-field-induced domain states of the ‘relaxor’ ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992).

    Article  Google Scholar 

  5. 5.

    Cowley, R. A., Gvasaliya, S. N., Lushnikov, S. G., Roessli, B. & Rotaru, G. M. Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011).

    Article  Google Scholar 

  6. 6.

    Fu, D. et al. Relaxor Pb(Mg1/3Nb2/3)O3: a ferroelectric with multiple inhomogeneities. Phys. Rev. Lett. 103, 207601 (2009).

    Article  Google Scholar 

  7. 7.

    Ni, Y., Chen, H. T., Shi, Y. P., He, L. H. & Soh, A. K. Modeling of polar nanoregions dynamics on the dielectric response of relaxors. J. Appl. Phys. 113, 224104 (2013).

    Article  Google Scholar 

  8. 8.

    Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

    Article  Google Scholar 

  9. 9.

    Li, F., Xu, Z. & Zhang, S. The effect of polar nanoregions on electromechanical properties of relaxor-PbTiO3 crystals: extracting from electric-field-induced polarization and strain behaviors. Appl. Phys. Lett. 105, 122904 (2014).

    Article  Google Scholar 

  10. 10.

    Pirc, R., Blinc, R. & Vikhnin, V. S. Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics. Phys. Rev. B 69, 212105 (2004).

    Article  Google Scholar 

  11. 11.

    Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

    Article  Google Scholar 

  12. 12.

    Hlinka, J. Do we need the ether of polar nanoregions? J. Adv. Dielectr. 2, 1241006 (2012).

    Article  Google Scholar 

  13. 13.

    Burton, B. P., Cockayne, E. & Waghmare, U. V. Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lengthscale for polar nanoregions. Phys. Rev. B 72, 064113 (2005).

    Article  Google Scholar 

  14. 14.

    Sherrington, D. BZT: a soft pseudospin glass. Phys. Rev. Lett. 111, 227601 (2013).

    Article  Google Scholar 

  15. 15.

    Akbarzadeh, A. R., Prosandeev, S., Walter, E. J., Al-Barakaty, A. & Bellaiche, L. Finite-temperature properties of Ba(Zr,Ti)O3 relaxors from first principles. Phys. Rev. Lett. 108, 257601 (2012).

    Article  Google Scholar 

  16. 16.

    Phelan, D. et al. Phase diagram of the relaxor ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 revisited: a neutron powder diffraction study of the relaxor skin effect. Phase Transit. 88, 283–305 (2015).

    Article  Google Scholar 

  17. 17.

    Bonneau, P. et al. X-ray and neutron diffraction studies of the diffuse phase transition in ceramics. J. Solid State Chem. 91, 350–361 (1991).

    Article  Google Scholar 

  18. 18.

    de Mathan, N. et al. A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K. J. Phys. Condens. Matter 3, 8159–8171 (1991).

    Article  Google Scholar 

  19. 19.

    Guo, Y. et al. The phase transition sequence and the location of the morphotropic phase boundary region in (1− x)[Pb(Mg1/3Nb2/3)O3]–xPbTiO3 single crystal. J. Phys. Condens. Matter 15, L77 (2003).

    Article  Google Scholar 

  20. 20.

    Bokov, A. A. & Ye, Z. G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

    Article  Google Scholar 

  21. 21.

    Grinberg, I., Juhás, P., Davies, P. & Rappe, A. Relationship between local structure and relaxor behavior in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).

    Article  Google Scholar 

  22. 22.

    Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).

    Article  Google Scholar 

  23. 23.

    Goossens, D. J. Diffuse scattering from lead-containing ferroelectric perovskite oxides. ISRN Mater. Sci. 2013, 107178 (2013).

    Article  Google Scholar 

  24. 24.

    Goossens, D. J. Local ordering in lead-based relaxor ferroelectrics. Acc. Chem. Res. 46, 2597–2606 (2013).

    Article  Google Scholar 

  25. 25.

    Xu, G., Zhong, Z., Hiraka, H. & Shirane, G. Three-dimensional mapping of diffuse scattering in Pb(Zn1/3Nb2/3)O3-xPbTiO3. Phys. Rev. B 70, 174109 (2004).

    Article  Google Scholar 

  26. 26.

    Xu, G., Shirane, G., Copley, J. R. D. & Gehring, P. M. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 69, 064112 (2004).

    Article  Google Scholar 

  27. 27.

    Hiraka, H., Lee, S.-H., Gehring, P. M., Xu, G. & Shirane, G. Cold neutron study on the diffuse scattering and phonon excitations in the relaxor Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 70, 184105 (2004).

    Article  Google Scholar 

  28. 28.

    Gehring, P. M. et al. Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb(Mg1/3Nb2/3)O3. Phys. Rev. B 79, 224109 (2009).

    Article  Google Scholar 

  29. 29.

    Stock, C. et al. Universal static and dynamic properties of the structural transition in Pb(Zn1/3Nb2/3)O3. Phys. Rev. B 69, 094104 (2004).

    Article  Google Scholar 

  30. 30.

    Paściak, M., Wołcyrz, M. & Pietraszko, A. Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the <110>-directed relative interdomain atomic shifts. Phys. Rev. B 76, 014117 (2007).

    Article  Google Scholar 

  31. 31.

    Vakhrushev, S., Ivanov, A. & Kulda, J. Diffuse neutron scattering in relaxor ferroelectric PbMg1/3Nb2/3O3. Phys. Chem. Chem. Phys. 7, 2340 (2005).

    Article  Google Scholar 

  32. 32.

    Bosak, A., Chernyshov, D., Vakhrushev, S. & Krisch, M. Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling. Acta Crystallogr. A. 68, 117–123 (2012).

    Article  Google Scholar 

  33. 33.

    Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).

    Article  Google Scholar 

  34. 34.

    Phelan, D. et al. Role of random electric fields in relaxors. Proc. Natl Acad. Sci. USA 111, 1754 (2014).

    Article  Google Scholar 

  35. 35.

    Stock, C. et al. Neutron and x-ray diffraction study of cubic [111] field-cooled Pb(Mg1∕3Nb2∕3)O3. Phys. Rev. B 76, 064122 (2007).

    Article  Google Scholar 

  36. 36.

    Tkachuk, A. & Chen, H. Anti-ferrodistortive nanodomains in PMN relaxor. AIP Conf. Proc. 677, 55 (2003).

    Article  Google Scholar 

  37. 37.

    Swainson, I. et al. Soft phonon columns on the edge of the Brillouin zone in the relaxor PbMg1/3Nb2/3O3. Phys. Rev. B 79, 224301 (2009).

    Article  Google Scholar 

  38. 38.

    Hilton, A. D., Barber, D. J., Randall, C. A. & Shrout, T. R. On short range ordering in the perovskite lead magnesium niobate. J. Mater. Sci. 25, 3461–3466 (1990).

    Article  Google Scholar 

  39. 39.

    Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).

    Article  Google Scholar 

  40. 40.

    Li, Q. et al. Soft phonon modes and diffuse scattering in Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 relaxor. Preprint at https://arxiv.org/abs/1610.09768 (2016).

  41. 41.

    Pasciak, M. et al. Assessing local structure in PbZn1/3Nb2/3O3 using diffuse scattering and reverse Monte Carlo refinement. Metall. Mater. Trans. A 44, 87–93 (2013).

    Article  Google Scholar 

  42. 42.

    Welberry, T. R. et al. Single-crystal neutron diffuse scattering and Monte Carlo study of the relaxor ferroelectric PbZn1/3Nb2/3O3 (PZN). J. Appl. Crystallogr. 38, 639–647 (2005).

    Article  Google Scholar 

  43. 43.

    Stock, C. et al. Damped soft phonons and diffuse scattering in 40%Pb(Mg1/3Nb2/3)O3-60%PbTiO3. Phys. Rev. B 73, 064107 (2006).

    Article  Google Scholar 

  44. 44.

    Xu, G., Viehland, D., Li, J. F., Gehring, P. M. & Shirane, G. Evidence of decoupled lattice distortion and ferroelectric polarization in the relaxor system PMN-xPT. Phys. Rev. B 68, 212410 (2003).

    Article  Google Scholar 

  45. 45.

    Gehring, P. M., Chen, W., Ye, Z.-G. & Shirane, G. The non-rhombohedral low-temperature structure of PMN-10% PT. J. Phys. Condens. Matter 16, 7113 (2004).

    Article  Google Scholar 

  46. 46.

    Matsuura, M. et al. Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1 − x)Pb(Mg1∕ 3Nb2∕ 3)O3xPbTiO3 (0 ≤ x ≤ 0.40). Phys. Rev. B 74, 144107 (2006).

    Article  Google Scholar 

  47. 47.

    Jin, Y. M., Wang, Y. U. & Khachaturyan, A. G. Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601 (2003).

    Article  Google Scholar 

  48. 48.

    Vakhrushev, S., Nabereznov, A., Sinha, S. K., Feng, Y. P. & Egami, T. Synchrotron X-ray scattering study of lead magnoniobate relaxor ferroelectric crystals. J. Phys. Chem. Solids 57, 1517–1523 (1996).

    Article  Google Scholar 

  49. 49.

    Prosandeev, S. & Bellaiche, L. Effects of atomic short-range order on properties of the PbMg1/3Nb2/3O3 relaxor ferroelectric. Phys. Rev. B 94, 180102 (2016). (R).

    Article  Google Scholar 

  50. 50.

    Rosenkranz, S. & Osborn, R. Corelli: efficient single crystal diffraction with elastic discrimination. Pramana J. Phys. 71, 705–711 (2008).

    Article  Google Scholar 

  51. 51.

    Ye, F., Liu, Y., Whitfield, R., Osborn, R. & Rosenkranz, S. Implementation of cross correlation for energy discrimination on the time-of-flight spectrometer CORELLI. J. Appl. Cryst. 51, 315–322 (2018).

    Article  Google Scholar 

  52. 52.

    Arnold, O. et al. Mantid-data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Meth. Phys. Res. A 764, 156–166 (2014).

    Article  Google Scholar 

  53. 53.

    Michels-Clark, T. M., Savici, A. T., Lynch, V. E., Wang, X. & Hoffmann, C. M. Expanding Lorentz and spectrum corrections to large volumes of reciprocal space for single-crystal time-of-flight neutron diffraction. J. Appl. Crystallogr. 49, 497–506 (2016).

    Article  Google Scholar 

  54. 54.

    Crystal Coordinate Transformation Workflow (CCTW). Advanced Photon Source, Argonne National Laboratory (2017); https://www.aps.anl.gov/Science/Scientific-Software/CCTW.

  55. 55.

    Singh, A., Pandey, D. & Zaharko, O. Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3. Phys. Rev. B 74, 024101 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Work at the Materials Science Division at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division. Research conducted at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Research conducted at the Cornell High Energy Synchrotron Source (CHESS) was supported by the NSF and NIH/NIGMS via NSF award DMR-1332208. The work at Simon Fraser University was supported by the US Office of Naval Research (ONR grant numbers N00014-12-11045 and N00014-16-1-3106) and the Natural Sciences and Engineering Research Council of Canada (NSERC grant number 203773). We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providng access to the neutron Prompt Gamma Activation Analysis (PGAA) research facilities used in this work. We also acknowledge the assistance of R. Paul in performing the PGAA measurements and data analysis.

Author information

Affiliations

Authors

Contributions

D.P. directed the project with guidance from P.M.G. M.J.K., P.M.G., S.R., F.Y., Y.L. and D.P. performed the diffuse neutron scattering experiments. M.J.K., S.R., J.P.C.R., R.O. and D.P. performed the X-ray diffuse scattering experiments. J.M.W. and R.O. developed the infrastructure to transform X-ray data into reciprocal space. W. Chen, Z.-G.Y. and H.L. grew single crystals. P.M.G. performed neutron prompt gamma measurements and analysis. M.J.K. performed the diffuse scattering analysis. D.P., M.J.K., P.M.G. and S.R. wrote the manuscript, with contributions from R.O., Z.-G.Y., Y.L., F.Y. and J.P.C.R. O.C. provided guidance to M.J.K.

Corresponding author

Correspondence to D. Phelan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Supplementary References 1,2, Supplementary Figures 1–6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krogstad, M.J., Gehring, P.M., Rosenkranz, S. et al. The relation of local order to material properties in relaxor ferroelectrics. Nature Mater 17, 718–724 (2018). https://doi.org/10.1038/s41563-018-0112-7

Download citation

Further reading