Phase change memory has been developed into a mature technology capable of storing information in a fast and non-volatile way1,2,3, with potential for neuromorphic computing applications4,5,6. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to fine-tune the properties of phase change memory materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds6,7,8. Here we show how the simplest material imaginable, a single element (in this case, antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized9,10. Removing compositional optimization issues may allow one to capitalize on nanosize effects in information storage.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Intel® Optane™ Technology (Intel Corporation, accessed 16 August 2017); https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

  2. 2.

    Choe, J. Intel 3D XPoint Memory Die Removed from Intel Optane™ PCM (Phase Change Memory) (TechInsights, accessed 16 August 2017); http://www.techinsights.com/about-techinsights/overview/blog/intel-3D-xpoint-memory-die-removed-from-intel-optane-pcm/

  3. 3.

    Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

  4. 4.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016).

  5. 5.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

  6. 6.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

  7. 7.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

  8. 8.

    Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011).

  9. 9.

    Debunne, A. et al. Evidence of crystallization-induced segregation in the phase change material Te-rich GST. J. Electrochem. Soc. 158, H965–H972 (2011).

  10. 10.

    Xie, Y. et al. Self‐healing of a confined phase change memory device with a metallic surfactant layer. Adv. Mater. 30, 1705587 (2018).

  11. 11.

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

  12. 12.

    Salinga, M. & Wuttig, M. Phase-change memories on a diet. Science 332, 543–544 (2011).

  13. 13.

    Raoux, S., Jordan-Sweet, J. L. & Kellock, A. J. Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, (2008).

  14. 14.

    Raoux, S., Cheng, H.-Y., Jordan-Sweet, J. L., Munoz, B. & Hitzbleck, M. Influence of interfaces and doping on the crystallization temperature of Ge-Sb. Appl. Phys. Lett. 94, (2009).

  15. 15.

    Simpson, R. E. et al. Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett. 10, 414–419 (2010).

  16. 16.

    Chen, B., tenBrink, G. H., Palasantzas, G. & Kooi, B. J.Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 6, 265 (2016).

  17. 17.

    Hauser, J. J. Hopping conductivity in amorphous antimony. Phys. Rev. B 9, 2623–2626 (1974).

  18. 18.

    Koelmans, W. W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

  19. 19.

    Krebs, D. et al. Threshold field of phase change memory materials measured using phase change bridge devices. Appl. Phys. Lett. 95, (2009).

  20. 20.

    Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

  21. 21.

    Schroers, J. Glasses made from pure metals. Nature 512, 142–143 (2014).

  22. 22.

    Greer, A. L. New horizons for glass formation and stability. Nat. Mater. 14, 542–546 (2015).

  23. 23.

    Raty, J. Y. et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).

  24. 24.

    Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, (2016).

  25. 25.

    Boniardi, M. et al. Statistics of resistance drift due to structural relaxation in phase-change memory arrays. IEEE Trans. Electron Devices 57, 2690–2696 (2010).

  26. 26.

    Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nat. Mater. 10, 512–520 (2011).

  27. 27.

    Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).

  28. 28.

    Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

  29. 29.

    Sohn, S. et al. Nanoscale size effects in crystallization of metallic glass nanorods. Nat. Commun. 6, 8157 (2015).

  30. 30.

    Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

  31. 31.

    Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a supercooled liquid confined by rough walls. J. Phys. Chem. B 108, 6673–6686 (2004).

  32. 32.

    Ropo, M., Akola, J. & Jones, R. O. Crystallization of supercooled liquid antimony: A density functional study. Phys. Rev. B 96, 161–168 (2017).

  33. 33.

    Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car–Parrinello-like approach to Born–Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).

  34. 34.

    VandeVondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

Download references


The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 610781, from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nos 640003 and 682675), and from Deutsche Forschungsgemeinschaft (DFG) through the collaborative research centre Nanoswitches (SFB 917). We also acknowledge the computational resources provided by JARA-HPC from RWTH Aachen University under projects nos JARA0150 and JARA0176. Finally, we thank E. Eleftheriou and Wabe W. Koelmans at IBM Research Zurich for their support of this work.

Author information


  1. IBM Research-Zurich, Rüschlikon, Switzerland

    • Martin Salinga
    • , Benedikt Kersting
    • , Ider Ronneberger
    • , Vara Prasad Jonnalagadda
    • , Manuel Le Gallo
    • , Iason Giannopoulos
    •  & Abu Sebastian
  2. RWTH Aachen University, Aachen, Germany

    • Martin Salinga
    • , Benedikt Kersting
    • , Ider Ronneberger
    • , Xuan Thang Vu
    • , Oana Cojocaru-Mirédin
    •  & Riccardo Mazzarello


  1. Search for Martin Salinga in:

  2. Search for Benedikt Kersting in:

  3. Search for Ider Ronneberger in:

  4. Search for Vara Prasad Jonnalagadda in:

  5. Search for Xuan Thang Vu in:

  6. Search for Manuel Le Gallo in:

  7. Search for Iason Giannopoulos in:

  8. Search for Oana Cojocaru-Mirédin in:

  9. Search for Riccardo Mazzarello in:

  10. Search for Abu Sebastian in:


B.K., A.S. and M.S. conceived and designed the experiments; V.P.J. and X.T.V. fabricated the Sb-based devices with support from I.G.; O.C.-M. analysed the integrity of the deposited Sb via atom-probe tomography; B.K. performed the experiments supported by M.L.G. and advised by M.S. and A.S.; B.K. and M.S. analysed the data; I.R. performed the computer simulations and analysed the data, with help from R.M.; M.S. wrote the manuscript with input from all of the authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Martin Salinga or Abu Sebastian.

Supplementary information

  1. Supplementary Information

    10 Sections, 9 Supplementary Figures, 22 Supplementary References

About this article

Publication history




Issue Date



Further reading