Monatomic phase change memory

Abstract

Phase change memory has been developed into a mature technology capable of storing information in a fast and non-volatile way1,2,3, with potential for neuromorphic computing applications4,5,6. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to fine-tune the properties of phase change memory materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds6,7,8. Here we show how the simplest material imaginable, a single element (in this case, antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized9,10. Removing compositional optimization issues may allow one to capitalize on nanosize effects in information storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: An increase in the quenching rate hinders crystallization.
Fig. 2: Creation of melt-quenched amorphous Sb in electrical switching experiments.
Fig. 3: Controlling the amorphization window.
Fig. 4: Improving robustness against crystallization by narrowing the confinement of the elemental glass.

References

  1. 1.

    Intel® Optane™ Technology (Intel Corporation, accessed 16 August 2017); https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

  2. 2.

    Choe, J. Intel 3D XPoint Memory Die Removed from Intel Optane™ PCM (Phase Change Memory) (TechInsights, accessed 16 August 2017); http://www.techinsights.com/about-techinsights/overview/blog/intel-3D-xpoint-memory-die-removed-from-intel-optane-pcm/

  3. 3.

    Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

    Article  Google Scholar 

  4. 4.

    Burr, G. W. et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124 (2016).

    Google Scholar 

  5. 5.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

    Article  Google Scholar 

  6. 6.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

    Article  Google Scholar 

  7. 7.

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    Article  Google Scholar 

  8. 8.

    Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011).

    Article  Google Scholar 

  9. 9.

    Debunne, A. et al. Evidence of crystallization-induced segregation in the phase change material Te-rich GST. J. Electrochem. Soc. 158, H965–H972 (2011).

    Article  Google Scholar 

  10. 10.

    Xie, Y. et al. Self‐healing of a confined phase change memory device with a metallic surfactant layer. Adv. Mater. 30, 1705587 (2018).

    Article  Google Scholar 

  11. 11.

    Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 332, 568–570 (2011).

    Article  Google Scholar 

  12. 12.

    Salinga, M. & Wuttig, M. Phase-change memories on a diet. Science 332, 543–544 (2011).

    Article  Google Scholar 

  13. 13.

    Raoux, S., Jordan-Sweet, J. L. & Kellock, A. J. Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, (2008).

  14. 14.

    Raoux, S., Cheng, H.-Y., Jordan-Sweet, J. L., Munoz, B. & Hitzbleck, M. Influence of interfaces and doping on the crystallization temperature of Ge-Sb. Appl. Phys. Lett. 94, (2009).

  15. 15.

    Simpson, R. E. et al. Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett. 10, 414–419 (2010).

    Article  Google Scholar 

  16. 16.

    Chen, B., tenBrink, G. H., Palasantzas, G. & Kooi, B. J.Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 6, 265 (2016).

    Google Scholar 

  17. 17.

    Hauser, J. J. Hopping conductivity in amorphous antimony. Phys. Rev. B 9, 2623–2626 (1974).

    Article  Google Scholar 

  18. 18.

    Koelmans, W. W. et al. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

    Article  Google Scholar 

  19. 19.

    Krebs, D. et al. Threshold field of phase change memory materials measured using phase change bridge devices. Appl. Phys. Lett. 95, (2009).

  20. 20.

    Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    Article  Google Scholar 

  21. 21.

    Schroers, J. Glasses made from pure metals. Nature 512, 142–143 (2014).

    Article  Google Scholar 

  22. 22.

    Greer, A. L. New horizons for glass formation and stability. Nat. Mater. 14, 542–546 (2015).

    Article  Google Scholar 

  23. 23.

    Raty, J. Y. et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).

    Article  Google Scholar 

  24. 24.

    Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, (2016).

  25. 25.

    Boniardi, M. et al. Statistics of resistance drift due to structural relaxation in phase-change memory arrays. IEEE Trans. Electron Devices 57, 2690–2696 (2010).

    Article  Google Scholar 

  26. 26.

    Watanabe, K., Kawasaki, T. & Tanaka, H. Structural origin of enhanced slow dynamics near a wall in glass-forming systems. Nat. Mater. 10, 512–520 (2011).

    Article  Google Scholar 

  27. 27.

    Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).

    Article  Google Scholar 

  28. 28.

    Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

    Article  Google Scholar 

  29. 29.

    Sohn, S. et al. Nanoscale size effects in crystallization of metallic glass nanorods. Nat. Commun. 6, 8157 (2015).

    Article  Google Scholar 

  30. 30.

    Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

    Article  Google Scholar 

  31. 31.

    Scheidler, P., Kob, W. & Binder, K. The relaxation dynamics of a supercooled liquid confined by rough walls. J. Phys. Chem. B 108, 6673–6686 (2004).

    Article  Google Scholar 

  32. 32.

    Ropo, M., Akola, J. & Jones, R. O. Crystallization of supercooled liquid antimony: A density functional study. Phys. Rev. B 96, 161–168 (2017).

    Article  Google Scholar 

  33. 33.

    Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car–Parrinello-like approach to Born–Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).

    Article  Google Scholar 

  34. 34.

    VandeVondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 610781, from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nos 640003 and 682675), and from Deutsche Forschungsgemeinschaft (DFG) through the collaborative research centre Nanoswitches (SFB 917). We also acknowledge the computational resources provided by JARA-HPC from RWTH Aachen University under projects nos JARA0150 and JARA0176. Finally, we thank E. Eleftheriou and Wabe W. Koelmans at IBM Research Zurich for their support of this work.

Author information

Affiliations

Authors

Contributions

B.K., A.S. and M.S. conceived and designed the experiments; V.P.J. and X.T.V. fabricated the Sb-based devices with support from I.G.; O.C.-M. analysed the integrity of the deposited Sb via atom-probe tomography; B.K. performed the experiments supported by M.L.G. and advised by M.S. and A.S.; B.K. and M.S. analysed the data; I.R. performed the computer simulations and analysed the data, with help from R.M.; M.S. wrote the manuscript with input from all of the authors.

Corresponding authors

Correspondence to Martin Salinga or Abu Sebastian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

10 Sections, 9 Supplementary Figures, 22 Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salinga, M., Kersting, B., Ronneberger, I. et al. Monatomic phase change memory. Nature Mater 17, 681–685 (2018). https://doi.org/10.1038/s41563-018-0110-9

Download citation

Further reading