Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light over a broad range of wavelengths, but their use has been hampered by a low quantum yield and a high sensitivity to spectral diffusion and blinking. In this Perspective, we discuss recent advances in the mastering of SWCNT optical properties by chemistry, electrical contacting and resonator coupling towards advancing their use as quantum light sources. We describe the latest results in terms of single-photon purity, generation efficiency and indistinguishability. Finally, we consider the main fundamental challenges stemming from the unique properties of SWCNTs and the most promising roads for SWCNT-based chip integrated quantum photonic sources.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 11 July 2018

    In the version of this Perspective originally published, the x-axis label of Fig. 1d was missing; it should have read ‘Wavelength (nm)’. The units of the y axis of Fig. 3b were incorrect; they should have been meV. And the citation of Fig. 3c in the main text was incorrect; it should have been to Fig. 3b. These issues have now been corrected.


  1. 1.

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

  2. 2.

    Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

  3. 3.

    Cheung, J. et al. The quantum candela: a re-definition of the standard units for optical radiation. J. Mod. Opt. 54, 373–396 (2007).

  4. 4.

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

  5. 5.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

  6. 6.

    Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

  7. 7.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

  8. 8.

    O’connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

  9. 9.

    Misewich, J. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

  10. 10.

    Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

  11. 11.

    Zheng, M. Sorting carbon nanotubes. Top. Curr. Chem. 375, 13 (2017).

  12. 12.

    Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

  13. 13.

    Piao, Y. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp 3 defects. Nat. Chem. 5, 840–845 (2013).

  14. 14.

    Vialla, F. et al. Unifying the low-temperature photoluminescence spectra of carbon nanotubes: The role of acoustic phonon confinement. Phys. Rev. Lett. 113, 057402 (2014).

  15. 15.

    Ai, N., Walden-Newman, W., Song, Q., Kalliakos, S. & Strauf, S. Suppression of blinking and enhanced exciton emission from individual carbon nanotubes. ACS Nano 5, 2664–2670 (2011).

  16. 16.

    Khasminskaya, S., Pyatkov, F., Flavel, B. S., Pernice, W. H. & Krupke, R. Waveguide-integrated light-emitting carbon nanotubes. Adv. Mater. 26, 3465–3472 (2014).

  17. 17.

    Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5, 5580 (2014).

  18. 18.

    Jeantet, A. et al. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett. 116, 247402 (2016).

  19. 19.

    Saito, T. & Ikoma, T. Effect of stacking sequence on valence bands in Ga/As/Ge (001) monolayer superlattices. Appl. Phys. Lett. 55, 1300–1302 (1989).

  20. 20.

    Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

  21. 21.

    Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

  22. 22.

    Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of singlewall carbon nanotubes. ACS Nano 11, 31–53 (2017).

  23. 23.

    Higashide, N., Yoshida, M., Uda, T., Ishii, A. & Kato, Y. Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices. Appl. Phys. Lett. 110, 191101 (2017).

  24. 24.

    He, X. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes. Nat. Photon. 11, 577–582 (2017).

  25. 25.

    Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

  26. 26.

    Berger, S. et al. Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 7, 398–402 (2007).

  27. 27.

    Srivastava, A., Htoon, H., Klimov, V. I. & Kono, J. Direct observation of dark excitons in individual carbon nanotubes: Inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101, 087402 (2008).

  28. 28.

    Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

  29. 29.

    Galland, C., Högele, A., Türeci, H. E. & Imamoglu, A. Non-Markovian decoherence of localized nanotube excitons by acoustic phonons. Phys. Rev. Lett. 101, 067402 (2008).

  30. 30.

    Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat. Nanotech. 2, 33–38 (2007).

  31. 31.

    Marty, L. et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

  32. 32.

    Georgi, C., Green, A. A., Hersam, M. C. & Hartschuh, A. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy. ACS Nano 4, 5914–5920 (2010).

  33. 33.

    Hofmann, M. S., Noé, J., Kneer, A., Crochet, J. J. & Högele, A. Ubiquity of exciton localization in cryogenic carbon nanotubes. Nano Lett. 16, 2958–2962 (2016).

  34. 34.

    Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

  35. 35.

    Ma, X. et al. Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes. Phys. Rev. Lett. 115, 017401 (2015).

  36. 36.

    Endo, T., Ishi-Hayase, J. & Maki, H. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature. Appl. Phys. Lett. 106, 113106 (2015).

  37. 37.

    Ma, X., Hartmann, N. F., Baldwin, J. K., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotech. 10, 671–675 (2015).

  38. 38.

    Hartmann, N. F. et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale 7, 20521–20530 (2015).

  39. 39.

    Ma, X. et al. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8, 10782–10789 (2014).

  40. 40.

    He, X. et al. Low-temperature single carbon nanotube spectroscopy of sp3 quantum defects. ACS Nano 11, 10785–10796 (2017).

  41. 41.

    Miyauchi, Y. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photon. 7, 715–719 (2013).

  42. 42.

    Hartmann, N. F. et al. Photoluminescence dynamics of aryl sp3 defect states in single-walled carbon nanotubes. ACS Nano 10, 8355–8365 (2016).

  43. 43.

    Crochet, J. J. et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12, 5091–5096 (2012).

  44. 44.

    Jeantet, A. et al. Exploiting one-dimensional exciton-phonon coupling for tunable and efficient single-photon generation with a carbon nanotube. Nano Lett. 17, 4184–4188 (2017).

  45. 45.

    Luo, Y. et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun. 8, 1413 (2017).

  46. 46.

    Graf, A. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

  47. 47.

    Pyatkov, F. et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat. Photon. 10, 420–427 (2016).

  48. 48.

    Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

  49. 49.

    Auffèves, A. et al. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys. Rev. B 81, 245419 (2010).

  50. 50.

    Ge, R.-C., Kristensen, P. T., Young, J. F. & Hughes, S. Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics. New J. Phys. 16, 113048 (2014).

  51. 51.

    Chassagneux, Y., Jeantet, A., Claude, T. & Voisin, C. Effect of phonon bath dimensionality on the spectral efficiency of single-photon emitters in the Purcell regime. Phys. Rev. B 97, 205124 (2018).

  52. 52.

    Senellart, P., Solomon, G., & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotech. 12, 1026–1039 (2017).

  53. 53.

    Watahiki, R. et al. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Appl. Phys. Lett. 101, 141124 (2012).

  54. 54.

    Imamura, S., Watahiki, R., Miura, R., Shimada, T. & Kato, Y. K. Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators. Appl. Phys. Lett. 102, 161102 (2013).

  55. 55.

    Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photon. 2, 172–177 (2015).

  56. 56.

    Krupke, R., Hennrich, F., Kappes, M. M. & v. Löhneysen, H. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1399 (2004).

  57. 57.

    Mori, T., Yamauchi, Y., Honda, S. & Maki, H. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes. Nano Lett. 14, 3277–3283 (2014).

  58. 58.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

  59. 59.

    Gol’Tsman, G. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

  60. 60.

    O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

  61. 61.

    Mouri, S., Miyauchi, Y. & Matsuda, K. Dispersionprocess effects on the photoluminescence quantum yields of single-walled carbon nanotubes dispersed using aromatic polymers. J. Phys. Chem. C 116, 10282–10286 (2012).

  62. 62.

    Hofmann, M. S. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotech. 8, 502–505 (2013).

  63. 63.

    Sarpkaya, I. et al. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat. Commun. 4, 2152 (2013).

  64. 64.

    Kwon, H. et al. Molecularly tunable fluorescent quantum defects. J. Am. Chem. Soc. 138, 6878–6885 (2016).

  65. 65.

    Maeda, Y. et al. Tuning of the photoluminescence and up-conversion photoluminescence properties of single-walled carbon nanotubes by chemical functionalization. Nanoscale 8, 16916–16921 (2016).

  66. 66.

    Brozena, A. H., Leeds, J. D., Zhang, Y., Fourkas, J. T. & Wang, Y. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions. ACS Nano 8, 4239–4247 (2014).

  67. 67.

    Akizuki, N., Aota, S., Mouri, S., Matsuda, K. & Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 6, 8920 (2015).

  68. 68.

    Kim, M. et al. Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J. Phys. Chem. C 120, 11268–11276 (2016).

  69. 69.

    Alexander-Webber, J. A. et al. Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields. Nano Lett. 14, 5194–5200 (2014).

  70. 70.

    Sarpkaya, I. et al. Strong acoustic phonon localization in copolymer wrapped carbon nanotubes. ACS Nano 9, 6383–6393 (2015).

  71. 71.

    Walden-Newman, W., Sarpkaya, I. & Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).

  72. 72.

    Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys 2, 759–764 (2006).

  73. 73.

    Flagg, E. B. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nat. Phys. 5, 203–207 (2009).

  74. 74.

    Nguyen, H.-S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

  75. 75.

    Grange, T. et al. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015).

Download references


Work at LANL was supported in part by the LANL LDRD programme and was performed in part at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Science user facility. Work at ENS was supported in part by the ANR grant NC2.

Author information


  1. Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA

    • X. He
    • , H. Htoon
    •  & S. K. Doorn
  2. Institute of Physics, University of Münster, Münster, Germany

    • W. H. P. Pernice
  3. Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany

    • F. Pyatkov
    •  & R. Krupke
  4. Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany

    • F. Pyatkov
    •  & R. Krupke
  5. Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France

    • A. Jeantet
    • , Y. Chassagneux
    •  & C. Voisin


  1. Search for X. He in:

  2. Search for H. Htoon in:

  3. Search for S. K. Doorn in:

  4. Search for W. H. P. Pernice in:

  5. Search for F. Pyatkov in:

  6. Search for R. Krupke in:

  7. Search for A. Jeantet in:

  8. Search for Y. Chassagneux in:

  9. Search for C. Voisin in:

Corresponding author

Correspondence to C. Voisin.

About this article

Publication history