Carbon nanotubes as emerging quantum-light sources

An Author Correction to this article was published on 22 May 2019

A Publisher Correction to this article was published on 11 July 2018

This article has been updated

Abstract

Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light over a broad range of wavelengths, but their use has been hampered by a low quantum yield and a high sensitivity to spectral diffusion and blinking. In this Perspective, we discuss recent advances in the mastering of SWCNT optical properties by chemistry, electrical contacting and resonator coupling towards advancing their use as quantum light sources. We describe the latest results in terms of single-photon purity, generation efficiency and indistinguishability. Finally, we consider the main fundamental challenges stemming from the unique properties of SWCNTs and the most promising roads for SWCNT-based chip integrated quantum photonic sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Optical emission properties of SWCNTs.
Fig. 2: Integration of SWCNTs into photonic and opto-electronic structures for control of light emission.
Fig. 3: Progress in optimization of SWCNTs’ luminescence characteristics.

Change history

  • 22 May 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 11 July 2018

    In the version of this Perspective originally published, the x-axis label of Fig. 1d was missing; it should have read ‘Wavelength (nm)’. The units of the y axis of Fig. 3b were incorrect; they should have been meV. And the citation of Fig. 3c in the main text was incorrect; it should have been to Fig. 3b. These issues have now been corrected.

References

  1. 1.

    Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    Article  Google Scholar 

  3. 3.

    Cheung, J. et al. The quantum candela: a re-definition of the standard units for optical radiation. J. Mod. Opt. 54, 373–396 (2007).

    Article  Google Scholar 

  4. 4.

    Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173–179 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    O’connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  9. 9.

    Misewich, J. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    CAS  Article  Google Scholar 

  10. 10.

    Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100, 217401 (2008).

    Article  Google Scholar 

  11. 11.

    Zheng, M. Sorting carbon nanotubes. Top. Curr. Chem. 375, 13 (2017).

    Article  Google Scholar 

  12. 12.

    Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330, 1656–1659 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    Piao, Y. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp 3 defects. Nat. Chem. 5, 840–845 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Vialla, F. et al. Unifying the low-temperature photoluminescence spectra of carbon nanotubes: The role of acoustic phonon confinement. Phys. Rev. Lett. 113, 057402 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Ai, N., Walden-Newman, W., Song, Q., Kalliakos, S. & Strauf, S. Suppression of blinking and enhanced exciton emission from individual carbon nanotubes. ACS Nano 5, 2664–2670 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Khasminskaya, S., Pyatkov, F., Flavel, B. S., Pernice, W. H. & Krupke, R. Waveguide-integrated light-emitting carbon nanotubes. Adv. Mater. 26, 3465–3472 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Miura, R. et al. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5, 5580 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Jeantet, A. et al. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett. 116, 247402 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Saito, T. & Ikoma, T. Effect of stacking sequence on valence bands in Ga/As/Ge (001) monolayer superlattices. Appl. Phys. Lett. 55, 1300–1302 (1989).

    CAS  Article  Google Scholar 

  20. 20.

    Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    Yang, F. et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of singlewall carbon nanotubes. ACS Nano 11, 31–53 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Higashide, N., Yoshida, M., Uda, T., Ishii, A. & Kato, Y. Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices. Appl. Phys. Lett. 110, 191101 (2017).

    Article  Google Scholar 

  24. 24.

    He, X. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes. Nat. Photon. 11, 577–582 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Berger, S. et al. Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 7, 398–402 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Srivastava, A., Htoon, H., Klimov, V. I. & Kono, J. Direct observation of dark excitons in individual carbon nanotubes: Inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101, 087402 (2008).

    Article  Google Scholar 

  28. 28.

    Hertel, T., Himmelein, S., Ackermann, T., Stich, D. & Crochet, J. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4, 7161–7168 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Galland, C., Högele, A., Türeci, H. E. & Imamoglu, A. Non-Markovian decoherence of localized nanotube excitons by acoustic phonons. Phys. Rev. Lett. 101, 067402 (2008).

    Article  Google Scholar 

  30. 30.

    Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat. Nanotech. 2, 33–38 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Marty, L. et al. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Georgi, C., Green, A. A., Hersam, M. C. & Hartschuh, A. Probing exciton localization in single-walled carbon nanotubes using high-resolution near-field microscopy. ACS Nano 4, 5914–5920 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    Hofmann, M. S., Noé, J., Kneer, A., Crochet, J. J. & Högele, A. Ubiquity of exciton localization in cryogenic carbon nanotubes. Nano Lett. 16, 2958–2962 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Nair, G., Zhao, J. & Bawendi, M. G. Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11, 1136–1140 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    Ma, X. et al. Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes. Phys. Rev. Lett. 115, 017401 (2015).

    Article  Google Scholar 

  36. 36.

    Endo, T., Ishi-Hayase, J. & Maki, H. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature. Appl. Phys. Lett. 106, 113106 (2015).

    Article  Google Scholar 

  37. 37.

    Ma, X., Hartmann, N. F., Baldwin, J. K., Doorn, S. K. & Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotech. 10, 671–675 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Hartmann, N. F. et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale 7, 20521–20530 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Ma, X. et al. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8, 10782–10789 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    He, X. et al. Low-temperature single carbon nanotube spectroscopy of sp3 quantum defects. ACS Nano 11, 10785–10796 (2017).

    CAS  Article  Google Scholar 

  41. 41.

    Miyauchi, Y. et al. Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photon. 7, 715–719 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Hartmann, N. F. et al. Photoluminescence dynamics of aryl sp3 defect states in single-walled carbon nanotubes. ACS Nano 10, 8355–8365 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Crochet, J. J. et al. Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12, 5091–5096 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Jeantet, A. et al. Exploiting one-dimensional exciton-phonon coupling for tunable and efficient single-photon generation with a carbon nanotube. Nano Lett. 17, 4184–4188 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Luo, Y. et al. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun. 8, 1413 (2017).

    Article  Google Scholar 

  46. 46.

    Graf, A. et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 16, 911–917 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Pyatkov, F. et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat. Photon. 10, 420–427 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Khasminskaya, S. et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10, 727–732 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Auffèves, A. et al. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys. Rev. B 81, 245419 (2010).

    Article  Google Scholar 

  50. 50.

    Ge, R.-C., Kristensen, P. T., Young, J. F. & Hughes, S. Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics. New J. Phys. 16, 113048 (2014).

    Article  Google Scholar 

  51. 51.

    Chassagneux, Y., Jeantet, A., Claude, T. & Voisin, C. Effect of phonon bath dimensionality on the spectral efficiency of single-photon emitters in the Purcell regime. Phys. Rev. B 97, 205124 (2018).

    CAS  Article  Google Scholar 

  52. 52.

    Senellart, P., Solomon, G., & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotech. 12, 1026–1039 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Watahiki, R. et al. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Appl. Phys. Lett. 101, 141124 (2012).

    Article  Google Scholar 

  54. 54.

    Imamura, S., Watahiki, R., Miura, R., Shimada, T. & Kato, Y. K. Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators. Appl. Phys. Lett. 102, 161102 (2013).

    Article  Google Scholar 

  55. 55.

    Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photon. 2, 172–177 (2015).

    CAS  Article  Google Scholar 

  56. 56.

    Krupke, R., Hennrich, F., Kappes, M. M. & v. Löhneysen, H. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1399 (2004).

    CAS  Article  Google Scholar 

  57. 57.

    Mori, T., Yamauchi, Y., Honda, S. & Maki, H. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes. Nano Lett. 14, 3277–3283 (2014).

    CAS  Article  Google Scholar 

  58. 58.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Gol’Tsman, G. et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

    Article  Google Scholar 

  60. 60.

    O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    CAS  Article  Google Scholar 

  61. 61.

    Mouri, S., Miyauchi, Y. & Matsuda, K. Dispersionprocess effects on the photoluminescence quantum yields of single-walled carbon nanotubes dispersed using aromatic polymers. J. Phys. Chem. C 116, 10282–10286 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Hofmann, M. S. et al. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotech. 8, 502–505 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    Sarpkaya, I. et al. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat. Commun. 4, 2152 (2013).

    Article  Google Scholar 

  64. 64.

    Kwon, H. et al. Molecularly tunable fluorescent quantum defects. J. Am. Chem. Soc. 138, 6878–6885 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    Maeda, Y. et al. Tuning of the photoluminescence and up-conversion photoluminescence properties of single-walled carbon nanotubes by chemical functionalization. Nanoscale 8, 16916–16921 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Brozena, A. H., Leeds, J. D., Zhang, Y., Fourkas, J. T. & Wang, Y. Controlled defects in semiconducting carbon nanotubes promote efficient generation and luminescence of trions. ACS Nano 8, 4239–4247 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Akizuki, N., Aota, S., Mouri, S., Matsuda, K. & Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 6, 8920 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Kim, M. et al. Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. J. Phys. Chem. C 120, 11268–11276 (2016).

    CAS  Article  Google Scholar 

  69. 69.

    Alexander-Webber, J. A. et al. Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields. Nano Lett. 14, 5194–5200 (2014).

    CAS  Article  Google Scholar 

  70. 70.

    Sarpkaya, I. et al. Strong acoustic phonon localization in copolymer wrapped carbon nanotubes. ACS Nano 9, 6383–6393 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    Walden-Newman, W., Sarpkaya, I. & Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12, 1934–1941 (2012).

    CAS  Article  Google Scholar 

  72. 72.

    Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys 2, 759–764 (2006).

    CAS  Article  Google Scholar 

  73. 73.

    Flagg, E. B. et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nat. Phys. 5, 203–207 (2009).

    CAS  Article  Google Scholar 

  74. 74.

    Nguyen, H.-S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    Article  Google Scholar 

  75. 75.

    Grange, T. et al. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. Phys. Rev. Lett. 114, 193601 (2015).

    Article  Google Scholar 

  76. 76.

    Gao, J., Loi, M. A., de Carvalho, E. J. F. & dos Santos, M. C. Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids. ACS Nano 5, 3993–3999 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Work at LANL was supported in part by the LANL LDRD programme and was performed in part at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Science user facility. Work at ENS was supported in part by the ANR grant NC2.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Voisin.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, X., Htoon, H., Doorn, S.K. et al. Carbon nanotubes as emerging quantum-light sources. Nature Mater 17, 663–670 (2018). https://doi.org/10.1038/s41563-018-0109-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing