Interplay of water and reactive elements in oxidation of alumina-forming alloys

Abstract

High-temperature alloys are crucial to many important technologies that underpin our civilization. All these materials rely on forming an external oxide layer (scale) for corrosion protection. Despite decades of research on oxide scale growth, many open questions remain, including the crucial role of the so-called reactive elements and water. Here, we reveal the hitherto unknown interplay between reactive elements and water during alumina scale growth, causing a metastable ‘messy’ nano-structured alumina layer to form. We propose that reactive-element-decorated, hydroxylated interfaces between alumina nanograins enable water to access an inner cathode in the bottom of the scale, at odds with the established scale growth scenario. As evidence, hydride-nanodomains and reactive element/hydrogen (deuterium) co-variation are observed in the alumina scale. The defect-rich alumina subsequently recrystallizes to form a protective scale. First-principles modelling is also performed to validate the RE effect. Our findings open up promising avenues in oxidation research and suggest ways to improve alloy properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A large oxide nodule formed in H2+N2 with traces of water.
Fig. 2: A typical oxide nodule formed in O2
Fig. 3: Evidence for H in alumina scales.
Fig. 4: The reaction sequence and schematic features are highlighted.

References

  1. 1.

    Marriott, G. B., Merz, M., Nihoul, J. & Ward J. High Temperature Alloys – Their Exploitable Potential (Elsevier, London/New York, 1987).

  2. 2.

    Meetham, G. W. High-temperature materials – a general review. J. Mater. Sci. 26, 853–860 (1991).

    Article  Google Scholar 

  3. 3.

    Singhal, S. C. & Kendall, K. High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design, and Applications (Elsevier, Oxford, 2003).

  4. 4.

    Shirzadi, A. & Jackson, S. Structural Alloys for Power PlantsOperational Challenges and High-Temperature Materials (Woodhead, Cambridge, 2014).

  5. 5.

    Kofstad, P. High Temperature Corrosion (Elsevier, London/New York, 1988).

  6. 6.

    Young, D. J. High Temperature Oxidation and Corrosion of Metals (Elsevier, Amsterdam, 2016).

  7. 7.

    Birks, N., Meier, G. H. & Pettit, F. S. Introduction to the High-Temperature Oxidation of Metals (Cambridge Univ. Press, Cambridge, 2006).

  8. 8.

    Task, M. N., Gleeson, B., Pettit, F. S. & Meier, G. H. The effect of microstructure on the type II hot corrosion of Ni-base MCrAlY alloys. Oxid. Met. 80, 125–146 (2013).

    Article  Google Scholar 

  9. 9.

    Heuer, A. H., Hovis, D. B., Smialek, J. L. & Gleeson, B. Alumina scale formation: a new perspective. J. Am. Ceram. Soc. 94, 2698–2698 (2011).

    Article  Google Scholar 

  10. 10.

    Gheno, T. et al. A thermodynamic approach to guide reactive element doping: Hf additions to NiCrAl. Oxid. Met. 87, 297–310 (2017).

    Article  Google Scholar 

  11. 11.

    Whittle, D. P. & Stringer, J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos. Trans. R. Soc. Lond. 295, 309–329 (1980).

    Article  Google Scholar 

  12. 12.

    Stringer, J. The reactive element effect in high-temperature corrosion. Mater. Sci. Eng. A 120, 129–137 (1989).

    Article  Google Scholar 

  13. 13.

    Pint, B. A. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys. J. Ceram. Soc. 86, 686–695 (2003).

    Article  Google Scholar 

  14. 14.

    Naumenko, D., Pint, B. A. & Quadakkers, W. J. Current thoughts on reactive element effects in alumina-forming systems: In memory of John Stringer. Oxid. Met. 86, 1–43 (2016).

    Article  Google Scholar 

  15. 15.

    Wagner, C. The theory of the warm-up process. Z. Phys. Chem. 21B, 25–41 (1933).

    Google Scholar 

  16. 16.

    Pint, B. A., Leibowitz, J. & Devan, J. H. The effect of an oxide dispersion on the critical Al content in Fe–Al alloys. Oxid. Met. 51, 181–97 (1999).

    Article  Google Scholar 

  17. 17.

    Saunders, S. R. J., Monteiro, M. & Rizzo, F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater. Sci. 53, 775–837 (2008).

    Article  Google Scholar 

  18. 18.

    Pint, B. A., Garratt-Reed, A. J. & Hobbs, L. W. The reactive element effect in commercial ODS FeCrAI alloys. Mater. High. Temp. 13, 3–16 (2016).

    Article  Google Scholar 

  19. 19.

    Pint, B. A., Martin, J. R. & Hobbs, L. W. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3. Oxid. Met. 39, 167–195 (1993).

    Article  Google Scholar 

  20. 20.

    Pint, B. A., More, K. L. & Wright, I. G. The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. Mater. High. Temp. 20, 375–386 (2003).

    Article  Google Scholar 

  21. 21.

    Ecer, G. M. & Meier, G. H. The effect of cerium on the oxidation of Ni-50Cr alloys. Oxid. Met. 13, 159–180 (1979).

    Article  Google Scholar 

  22. 22.

    Heuer, A. H. et al. The band structure of polycrystalline Al2O3 and its influence on transport phenomena. J. Am. Ceram. Soc. 99, 733–747 (2016).

    Article  Google Scholar 

  23. 23.

    Nakagawa, T. et al. Yttrium doping effect on oxygen grain boundary diffusion in α-Al2O3. Acta. Mater. 55, 6627–6633 (2007).

    Article  Google Scholar 

  24. 24.

    Cho, J., Wang, C. M., Chan, H. M., Rickman, J. M. & Harmer, P. Role of segregating dopants on the improved creep resistance of aluminum oxide. Acta Mater. 47, 4197–4207 (1999).

    Article  Google Scholar 

  25. 25.

    Yoshida, H., Ikuhara, Y. & Sakuma, T. High-temperature creep resistance in rare-earth-doped, fine-grained Al2O3. J. Mater. Res. 13, 2597–2601 (1998).

    Article  Google Scholar 

  26. 26.

    Young, D. J. et al. Oxidation kinetics of Y-doped FeCrAl-alloys in low and high pO2 gases. Mater. Corros. 61, 838–844 (2010).

    Article  Google Scholar 

  27. 27.

    Jönsson, Bo & Westerlund, A. Oxidation comparison of alumina-forming and chromia-forming commercial alloys at 1100 and 1200 °C. Oxid. Met. 88, 315–326 (2017).

    Article  Google Scholar 

  28. 28.

    Unocic, K. A., Yamamoto, Y. & Pint, B. A. Effect of Al and Cr content on air and steam oxidation of FeCrAl alloys and commercial APMT alloy. Oxid. Met. 87, 431–441 (2017).

    Article  Google Scholar 

  29. 29.

    Whittle, D. P., Boone, D. H. & Allam, I. M. Morphology of Al2O3 scales on doped Co–Cr–A1 coatings. Thin Solid Films 73, 359–364 (1980).

    Article  Google Scholar 

  30. 30.

    Young, D. J., Naumenko, D., Wessel, E., Singheiser, L. & Quadakkers, W. J. Effect of Zr additions on the oxidation kinetics of FeCrAlY alloys in low and high pO2 gases. Metall. Mater. Trans. A 42a, 1173–1183 (2011).

    Article  Google Scholar 

  31. 31.

    Allam, I. M., Whittle, D. P. & Stringer, J. The oxidation behavior of CoCrAI systems containing active element additions. Oxid. Met. 12, 35–66 (1978).

    Article  Google Scholar 

  32. 32.

    Hindam, H. & Whittle, D. P. Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions. J. Electro Chem. Soc. 129, 1147–1149 (1982).

    Article  Google Scholar 

  33. 33.

    Klöwer, J. Factors affecting the oxidation behaviour of thin Fe–Cr–Al foils. Part II: The effect of alloying elements: Overdoping. Mater. Corros. 51, 373–385 (2000).

    Article  Google Scholar 

  34. 34.

    Liu, F., Götlind, H., Svensson, J. E., Johansson, L. G. & Halvarsson, M. TEM investigation of the microstructure of the scale formed on a FeCrAlRE alloy at 900 °C: the effect of Y-rich RE particles. Oxid. Met. 74, 11–32 (2010).

    Article  Google Scholar 

  35. 35.

    Hou, P. Y. Impurity effects on alumina scale growth. J. Am. Ceram. Soc. 86, 660–668 (2003).

    Article  Google Scholar 

  36. 36.

    Pint, B. A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Met. 45, 1–37 (1996).

    Article  Google Scholar 

  37. 37.

    Tatsumi, K., Muto, S., Ikeda, K. & Orimo, S. Chemical bonding of AlH3 hydride by Al-L2,3 electron energy-loss spectra and first-principles calculations. Materials 5, 566–574 (2012).

    Article  Google Scholar 

  38. 38.

    Jiang, N. & Spence, J. C. In situ EELS study of dehydration of Al(OH)3 by electron beam irradiation. Ultramicroscopy 111, 860–864 (2011).

    Article  Google Scholar 

  39. 39.

    Subanovic, M. et al. Blistering of MCrAlY-coatings in H2/H2O-atmospheres. Corros. Sci. 51, 446–450 (2009).

    Article  Google Scholar 

  40. 40.

    Johnson, J. R. T. & Panas, I. Hydrolysis on transition metal oxide clusters and the stabilities of M−O−M bridges. Inorg. Chem. 39, 3192–3204 (2000).

    Article  Google Scholar 

  41. 41.

    Johnson, J. R. T. & Panas, I. Reaction enthalpies for the hydrolysis of 3p, 4p and early 3d oxide bridges – how unique are the oligophosphates? Chem. Phys. Lett. 348, 433–439 (2001).

    Article  Google Scholar 

  42. 42.

    Lindgren, M. et al. Toward a comprehensive mechanistic understanding of hydrogen uptake in zirconium alloys by combining atom probe analysis with electronic structure calculations. ASTM Spec. Tech. Publ. 1543, 515–539 (2015).

    Google Scholar 

  43. 43.

    Babic, V., Geers, C., Jönsson, B. & Panas, I. Fates of hydrogen during alumina growth below yttria nodules in FeCrAl (RE) at low partial pressures of water. Electrocatalysis 8, 565–576 (2017).

    Article  Google Scholar 

  44. 44.

    Lindgren, M. & Panas, I. Impact of additives on zirconium oxidation by water: Mechanistic insights from first principles. RSC Adv. 3, 21613–21619 (2013).

    Article  Google Scholar 

  45. 45.

    Lindgren, M. & Panas, I. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting. Beilstein J. Nanotechnol. 5, 195–201 (2014).

    Article  Google Scholar 

  46. 46.

    Heuer, A. H. et al. On the growth of Al2O3 scales. Acta Mater. 61, 6670–6683 (2013).

    Article  Google Scholar 

  47. 47.

    Yang, M. Y. et al. Charge-dependent oxygen vacancy diffusion in Al2O3-based resistive-random-access-memories. Appl. Phys. Lett. 103, 093504 (2013).

    Article  Google Scholar 

  48. 48.

    Jönsson, B., Berglund, R., Magnusson, J., Henning, P. & Hättestrand, M. High temperature properties of a new powder metallurgical FeCrAl alloy. Mater. Sci. Forum 461-464, 455–462 (2004).

    Article  Google Scholar 

  49. 49.

    Mortazavi, N., Esmaily, M. & Halvarsson, M. The capability of transmission Kikuchi diffraction technique for characterizing nano-grained oxide scales formed on a FeCrAl stainless steel. Mater. Lett. 147, 42–45 (2015).

    Article  Google Scholar 

  50. 50.

    Rogerson, P. A. Statistical Methods for GeographyA Student’s Guide (SAGE, Los Angeles, CA, 2001).

  51. 51.

    Zhu, Z. H., Shutthanandan, V. & Engelhard, M. Surf. Interface Anal. 44, 232–237 (2012).

    Article  Google Scholar 

  52. 52.

    Thompson, K. et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007).

    Article  Google Scholar 

  53. 53.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).

    Article  Google Scholar 

  54. 54.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  55. 55.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  56. 56.

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  Google Scholar 

  57. 57.

    Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. Krist. 220, 567–570 (2005).

    Google Scholar 

  58. 58.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104–154119 (2010).

    Article  Google Scholar 

  59. 59.

    Materials Studio 6.0 (Accelrys Inc.).

  60. 60.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Swedish Energy Agency is gratefully acknowledged. The authors are grateful to T. Helander of Sandvik Heating Technology for helpful advice during the research, M. Thuvander (Division for Materials Microstructure in the Department of Physics at Chalmers University of Technology) for interpretation of the APT results, and M. Norell (Division of Materials and Manufacture in the Department of Industrial and Materials Science at Chalmers University of Technology) for his help in conducting AES analysis. This research was conducted in the Swedish High Temperature Corrosion Centre (HTC) at Chalmers University of Technology, Gothenburg, Sweden.

Author information

Affiliations

Authors

Contributions

N.M. carried out the FIB/BIB/SEM/(S)TEM/EDX, TEM diffraction, EBSD, TKD and some parts of the statistical analyses. M.H. assisted with data interpretation. N.M. and M.H. developed and utilized the mTKD technique to characterize the microstructure of the ultra-fine grained (‘messy/thick’) oxide scale forming around RE particles. C.G. designed and carried out the controlled exposures. I.P. and V.B. carried out the density functional theory calculations. M.S. carried out some of the HR-(S)TEM and EELS analyses. N.M prepared FIB-prepared thin foils and cross marks and P.M. conducted the (nano/TOF)SIMS analyses. K.L. conducted the APT investigations. M.E. and B.J. performed some parts of the statistical analyses and M.E. also contributed in TOF-SIMS experiments. N.M., M.E., I.P., J.E.S. and L.G.J. wrote the manuscript. All the authors contributed to interpretation of the results and commented on the manuscript.

Corresponding authors

Correspondence to N. Mortazavi or L. G. Johansson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables: S1–S2, Supplementary Figures: Figures S1–S21, Supplementary References 1–28

Supplementary Videos

Interplay of water and reactive elements

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mortazavi, N., Geers, C., Esmaily, M. et al. Interplay of water and reactive elements in oxidation of alumina-forming alloys. Nature Mater 17, 610–617 (2018). https://doi.org/10.1038/s41563-018-0105-6

Download citation

Further reading