Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework


Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental1,2 and health problems3,4. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer–dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NO2 adsorption, thermodynamics, selectivity and breakthrough data for MFM-300(Al).
Fig. 2: Views of the structural model for MFM-300(Al)·(NO2)2·(N2O4)2 determined by high-resolution synchrotron PXRD data at 298 K and DFT calculations.
Fig. 3: FTIR and INS spectra for MFM-300(Al) as a function of NO2 loading.
Fig. 4: EPR and 1H ENDOR spectra of MFM-300(Al)·(NO2)2·(N2O4)2.

Similar content being viewed by others


  1. Lelieveld, J. et al. Atmospheric oxidation capacity sustained by a tropical forest. Nature 452, 737–740 (2008).

    Article  Google Scholar 

  2. Edwards, P. M. et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 514, 351–354 (2014).

    Article  Google Scholar 

  3. Chen, Z., Wang, J., Ma, G. & Zhang, Y. China tackles the health effects of air pollution. Lancet 382, 1959–1960 (2013).

    Article  Google Scholar 

  4. Feigin, V. L. et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet Neurol. 15, 913–924 (2013).

    Article  Google Scholar 

  5. Rezaei, F., Rownaghi, A. A., Monjezi, S., Lively, R. P. & Jones, C. W. SOx/NOx removal from flue gas streams by solid adsorbents: a review of current challenges and future directions. Energy Fuels 29, 5467–5486 (2015).

    Article  Google Scholar 

  6. Goupil, J. M., Hemidy, J. F. & Cornet, D. Adsorption of NO2 on modified Y zeolites. Zeolites 2, 47–50 (1982).

    Article  Google Scholar 

  7. Levasseur, B., Ebrahim, A. M. & Bandosz, T. J. Role of Zr4+ cations in NO2 adsorption on Ce1−xZrxO2 mixed oxides at ambient conditions. Langmuir 27, 9379–9386 (2011).

    Article  Google Scholar 

  8. Levasseur, B., Ebrahim, A. M. & Bandosz, T. J. Interactions of NO2 with amine-functionalized SBA-15: effects of synthesis route. Langmuir 28, 5703–5714 (2012).

    Article  Google Scholar 

  9. Florent, M., Tocci, M. & Bandosz, T. J. NO2 adsorption at ambient temperature on urea-modified ordered mesoporous carbon. Carbon 63, 283–293 (2013).

    Article  Google Scholar 

  10. Belhachemi, M., Jeguirim, M., Limousy, L. & Addoun, F. Comparison of NO2 removal using date pits activated carbon and modified commercialized activated carbon via different preparation methods: effect of porosity and surface chemistry. Chem. Eng. J. 253, 121–129 (2014).

    Article  Google Scholar 

  11. Zhou, H. C. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014).

    Article  Google Scholar 

  12. Yang, S. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat. Chem. 4, 887–894 (2012).

    Article  Google Scholar 

  13. Ebrahim, A. M. & Bandosz, T. J. Effect of amine modification on the properties of zirconium–carboxylic acid based materials and their applications as NO2 adsorbents at ambient conditions. Micropor. Mesopor. Mater. 188, 149–162 (2014).

    Article  Google Scholar 

  14. Ebrahim, A. M., Levasseur, B. & Bandosz, T. J. Interactions of NO2 with Zr-based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions. Langmuir 29, 168–174 (2013).

    Article  Google Scholar 

  15. Peterson, G. W., Mahle, J. J., DeCoste, J. B., Gordon, W. O. & Rossin, J. A. Extraordinary NO2 removal by the metal–organic framework UiO-66-NH2. Angew. Chem. Int. Ed. 55, 6235–6238 (2016).

    Article  Google Scholar 

  16. DeCoste, J. B., Demasky, T. J., Katz, M. J., Farha, O. K. & Hupp, J. T. A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New J. Chem. 39, 2396–2399 (2015).

    Article  Google Scholar 

  17. Ebrahim, A. M. & Bandosz, T. J. Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions. ACS Appl. Mater. Interfaces 5, 10565–10573 (2013).

    Article  Google Scholar 

  18. Levasseur, B., Petit, C. & Bandosz, T. J. Reactive adsorption of NO2 on copper-based metal−organic framework and graphite oxide/metal−organic framework composites. ACS Appl. Mater. Interfaces 2, 3606–3613 (2010).

    Article  Google Scholar 

  19. Petit, C., Levasseur, B., Mendoza, B. & Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. Micropor. Mesopor. Mater. 154, 107–112 (2012).

    Article  Google Scholar 

  20. Kvick, Å., McMullan, R. K. & Newton, M. D. The structure of dinitrogen tetroxide N2O4: neutron diffraction study at 100, 60, and 20 K and ab initio theoretical calculations. J. Chem. Phys. 76, 3754–3761 (1982).

    Article  Google Scholar 

  21. Kachi-Terajima, C., Akatsuka, T., Kohbara, M. A. & Takamizawa, S. Structural and magnetic study of N2, NO, NO2, and SO2 adsorbed within a flexible single-crystal adsorbent of [Rh2(bza)4(pyz)]n. Chem. Asian J. 2, 40–50 (2007).

    Article  Google Scholar 

  22. Wang, X., Hanson, J. C., Kwak, J. H., Szanyi, J. & Peden, C. H. F. Cation movements during dehydration and NO2 desorption in a Ba–Y, FAU zeolite: an in situ time-resolved X-ray diffraction study. J. Phys. Chem. C 117, 3915–3922 (2013).

    Article  Google Scholar 

  23. Guttman, A. Absolute infrared intensity measurements on nitrogen dioxide and dinitrogen tetroxide. J. Quant. Spectrosc. Radiat. Transf. 2, 1–15 (1962).

    Article  Google Scholar 

  24. Shlotani, M. & Freed, J. H. ESR studies of NO2 adsorbed on surfaces: analysis of motional dynamics. J. Phys. Chem. 85, 3873–3883 (1981).

    Article  Google Scholar 

  25. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  Google Scholar 

  26. Giauque, W. F. & Kemp, J. D. The entropies of nitrogen tetroxide and nitrogen dioxide; the heat capacity from 15°K to the boiling point; the heat of vaporization and vapor pressure; the equilibria N2O4 = 2NO2 = 2NO + O2. J. Chem. Phys. 6, 40–52 (1938).

    Article  Google Scholar 

  27. Cooper, A. I. & Poliakoff, M. High-pressure reactions in polyethylene films, a new development in matrix isolation. The photochemical reaction of Fe(CO)5 with N2 and the thermal reaction of Fe(CO)4(N2) with H2. Chem. Phys. Lett. 212, 611–616 (1993).

    Article  Google Scholar 

  28. Clark, S. J. et al. First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005).

    Google Scholar 

  29. Ramirez-Cuesta, A. J. aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Comput. Phys. Commun. 157, 226–238 (2004).

    Article  Google Scholar 

  30. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  Google Scholar 

  31. Schweiger, A. and Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, Oxford, 2001).

  32. Stoll, S. & Britt, R. D. General and efficient simulation of pulse EPR spectra. Phys. Chem. Chem. Phys. 11, 6614–6625 (2009).

    Article  Google Scholar 

Download references


We thank the EPSRC (EP/I011870), the ERC (AdG 226593) and the Universities of Manchester and Nottingham for funding. We thank the EPSRC for funding of the EPSRC National Service for EPR Spectroscopy at Manchester. We are especially grateful to ORNL and the ESRF for access to the Beamlines VISION and ID22, respectively. We thank C. Dejoie for help at Beamline ID22 at the ESRF. The computing resources were made available through the VirtuES and the ICE-MAN projects, funded by the Laboratory Directed Research and Development program at ORNL. A.M.S. thanks the Russian Science Foundation (grant no. 17-73-10320) and the Royal Society of Chemistry for funding. M.S. acknowledges the Russian Ministry of Science and Education for the award of a Russian Megagrant (14.Z50.31.0006).

Author information

Authors and Affiliations



X.H., H.G.W.G. and L.B. performed syntheses, characterization of MOF samples and measurements of adsorption isotherms. X.H. carried out measurements and analysis of the breakthrough data. K.M.T. performed analysis of isotherms. S.Y., J.S. and C.D. were responsible for collection and analysis of synchrotron PXRD data. S.Y., Y.C., L.L.D. and A.J.R.-C. were responsible for collection and analysis of neutron scattering data. A.J.D. and M.W.G. were responsible for collection and analysis of infrared data. X.H., A.M.S., F.T. and E.J.L.M. were responsible for collection and analysis of EPR data. S.Y. and M.S. were responsible for the overall direction of the project and preparation of the manuscript.

Corresponding authors

Correspondence to Sihai Yang or Martin Schröder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sections 1–14, Supplementary Figures 1–36, Supplementary Tables 1–7, Supplementary References 1–18

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Godfrey, H.G.W., Briggs, L. et al. Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nature Mater 17, 691–696 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing