Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure

Article metrics


Vortices, occurring whenever a flow field ‘whirls’ around a one-dimensional core, are among the simplest topological structures, ubiquitous to many branches of physics. In the crystalline state, vortex formation is rare, since it is generally hampered by long-range interactions: in ferroic materials (ferromagnetic and ferroelectric), vortices are observed only when the effects of the dipole–dipole interaction are modified by confinement at the nanoscale1,2,3, or when the parameter associated with the vorticity does not couple directly with strain4. Here, we observe an unprecedented form of vortices in antiferromagnetic haematite (α-Fe2O3) epitaxial films, in which the primary whirling parameter is the staggered magnetization. Remarkably, ferromagnetic topological objects with the same vorticity and winding number as the α-Fe2O3 vortices are imprinted onto an ultra-thin Co ferromagnetic over-layer by interfacial exchange. Our data suggest that the ferromagnetic vortices may be merons (half-skyrmions, carrying an out-of plane core magnetization), and indicate that the vortex/meron pairs can be manipulated by the application of an in-plane magnetic field, giving rise to large-scale vortex–antivortex annihilation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Vector map of the α-Fe2O3 antiferromagnetic domain configuration from X-ray photoemission microscopy.
Fig. 2: Magnetic domain structure of α-Fe2O3/Co film.
Fig. 3: Topological defects in α-Fe2O3 and Co.
Fig. 4: Vortex annihilation with an ex-situ applied field.


  1. 1.

    Zheng, Y. & Chen, W. Characteristics and controllability of vortices in ferromagnetics, ferroelectrics and multiferroics. Rep. Prog. Phys. 80, 086501 (2017).

  2. 2.

    Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

  3. 3.

    Cowburn, R. P., Koltsov, D. K., Adeyeye, A. O., Welland, M. E. & Tricker, D. M. Single-domain circular nanomagnets. Phys. Rev. Lett. 83, 1042 (1999).

  4. 4.

    Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

  5. 5.

    Hallsteinsen, I. et al. Magnetic domain configuration of (111)-oriented LaFeO3 epitaxial thin films. APL Mater. 5, 086107 (2017).

  6. 6.

    Waterfield Price, N. et al. Coherent magnetoelastic domains in multiferroic BiFeO3 films. Phys. Rev. Lett. 117, 177601 (2016).

  7. 7.

    Alders, D. et al. Magnetic x-ray dichroism study of the nearest-neighbor spin-spin correlation function and long-range magnetic order parameter in antiferromagnetic NiO. Europhys. Lett. 32, 259 (1995).

  8. 8.

    Scholl, A., Ohldag, H., Nolting, F., Stöhr, J. & Padmore, H. A. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures. Rev. Sci. Instrum. 73, 1362–1366 (2002).

  9. 9.

    Chen, P., Lee, N., McGill, S., Cheong, S.-W. & Musfeldt, J. Magnetic-field-induced color change in α-Fe2O3 single crystals. Phys. Rev. B 85, 174413 (2012).

  10. 10.

    Marmeggi, J. C., Hohlwein, D. & Bertaut, E. F. Magnetic neutron Laue diffraction study of the domain distribution in α-Fe2O3. Phys. Stat. Sol. (a) 39, 57–64 (1977).

  11. 11.

    Nehring, J. & Saupe, A. On the schlieren texture in nematic and smectic liquid crystals. J. Chem. Soc. Faraday Trans. 2 68, 1–15 (1972).

  12. 12.

    Chae, S. C. et al. Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).

  13. 13.

    Artyukhin, S., Delaney, K. T., Spaldin, N. A. & Mostovoy, M. Landau theory of topological defects in multiferroic hexagonal manganites. Nat. Mater. 13, 42–49 (2013).

  14. 14.

    Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976).

  15. 15.

    Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

  16. 16.

    Meier, Q. N. et al. Global formation of topological defects in the multiferroic hexagonal manganites. Phys. Rev. X 7, 041014 (2017).

  17. 17.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

  18. 18.

    Sort, J. et al. Imprinting vortices into antiferromagnets. Phys. Rev. Lett. 97, 067201 (2006).

  19. 19.

    Wu, J. et al. Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nat. Phys. 7, 303–306 (2011).

  20. 20.

    Wintz, S. et al. Topology and origin of effective spin meron pairs in ferromagnetic multilayer elements. Phys. Rev. Lett. 110, 177201 (2013).

  21. 21.

    Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

  22. 22.

    Senthil, T., Vishwanath, A., Balents, L., Sachdev, S. & Fisher, M. P. Deconfined quantum critical points. Science 303, 1490–1494 (2004).

  23. 23.

    Griffin, S. M. et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

  24. 24.

    Shimomura, N. et al. Morin transition temperature in (0001)-oriented α-Fe2O3 thin film and effect of Ir doping. J. Appl. Phys. 117, 17C736 (2015).

  25. 25.

    Yu, Y.-S., Jung, H., Lee, K.-S., Fischer, P. & Kim, S.-K. Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture. Appl. Phys. Lett. 98, 052507 (2011).

  26. 26.

    Nakano, K. et al. All-electrical operation of magnetic vortex core memory cell. Appl. Phys. Lett. 99, 262505 (2011).

  27. 27.

    Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  28. 28.

    Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

  29. 29.

    Okada, K. & Kotani, A. Complementary roles of Co 2p X-ray absorption and photoemission spectra in CoO. J. Phys. Soc. Jpn 61, 449–453 (1992).

  30. 30.

    Van der Laan, G. & Kirkman, I. W. The 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J. Phys. Condens. Matter 4, 4189–4204 (1992).

  31. 31.

    Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, Berlin, Heidelberg, 2006).

  32. 32.

    Arenholz, E., van der Laan, G., Chopdekar, R. V. & Suzuki, Y. Anisotropic X-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4. Phys. Rev. B 74, 094407 (2006).

Download references


We acknowledge Diamond Light Source for time on Beam Line I06 under Proposals SI16338 and SI15088. We thank S. Parameswaran for discussions and T. Hesjedal and S. Zhang for assistance with initial film growth. The work done at the University of Oxford (F.P.C., N.W.P., R.D.J. and P.G.R.) is funded by EPSRC grant no. EP/M020517/1, entitled Oxford Quantum Materials Platform grant. The work at University of Wisconsin-Madison (J.S., J.I., M.S.R. and C.-B.E.) is supported by the Army Research Office through grant nos W911NF-13-1-0486 and W911NF-17-1-0462. R.D.J. acknowledges support from a Royal Society University Research Fellowship.

Author information

F.P.C., N.W.P., R.D.J. and A.D.L. performed the experiment. F.P.C. and A.D.L. performed the data reduction. F.P.C and N.W.P. performed the data analysis. J.S grew the films. D.T.H. made the α-Fe2O3 sputtering target. J.S and F.P.C. characterized the epitaxial relation of the films. J.I. performed the MOKE measurement. G.v.L. performed calculations of the XMLD signal. N.W.P. performed the micromagnetic simulations. P.G.R conceived and designed the experiment and supervised the analysis together with R.D.J, while C.-B.E. supervised the film growth. M.S.R. supervised the MOKE measurement. P.G.R. and F.P.C. prepared the first draft of the manuscript. All authors discussed and contributed to the manuscript.

Correspondence to C.-B. Eom or P. G. Radaelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Figures 1–7, Supplementary References 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading