Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance


Islet transplantation is a promising therapy for type 1 diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis. Here, we report that localized immunomodulation using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) results in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts over 200 days. Survivors generated normal systemic responses to donor antigens, implying immune privilege of the graft, and had increased CD4+CD25+FoxP3+ T regulatory cells in the graft and draining lymph nodes. Deletion of T regulatory cells resulted in acute rejection of established islet allografts. This localized immunomodulatory biomaterial-enabled approach may provide an alternative to chronic immunosuppression for clinical islet transplantation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Microgels for controlled presentation of immunomodulatory proteins.
Fig. 2: Microgels prolong SA-FasL retention in vivo.
Fig. 3: Survival of allogeneic islet grafts co-transplanted with SA-FasL-presenting microgels.
Fig. 4: Immune monitoring and the role of CD4+CD25+FoxP3+ Treg cells in islet graft acceptance.
Fig. 5: Treg cells are required for islet graft acceptance.
Fig. 6: Immune acceptance of allogeneic islet grafts co-transplanted with SA-FasL-presenting microgels in the epididymal fat pad.


  1. 1.

    Nakayama, M. et al. Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity. J. Clin. Invest. 117, 1835–1843 (2007).

    Article  Google Scholar 

  2. 2.

    Roep, B. O., Arden, S. D., Devries, R. R. P. & Hutton, J. C. T-cell clones from a type-1 diabetes patient respond to insulin secretory granule proteins. Nature 345, 632–634 (1990).

    Article  Google Scholar 

  3. 3.

    Yoon, J. W. et al. Control of autoimmune diabetes in NOD mice by CAD expression or suppression in beta cells. Science 284, 1183–1187 (1999).

    Article  Google Scholar 

  4. 4.

    Alejandro, R. et al. Long-term function (6 years) of islet allografts in type 1 diabetes. Diabetes 46, 1983–1989 (1997).

    Article  Google Scholar 

  5. 5.

    Boggi, U. et al. Long-term (5 years) efficacy and safety of pancreas transplantation alone in type 1 diabetic patients. Transplantation 93, 842–846 (2012).

    Article  Google Scholar 

  6. 6.

    Shapiro, A. M. J. et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 355, 1318–1330 (2006).

    Article  Google Scholar 

  7. 7.

    Radu, R. G. et al. Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am. J. Physiol. Endocrinol. Metab. 288, E365–E371 (2005).

    Article  Google Scholar 

  8. 8.

    Hernandez-Fisac, I. et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. Am. J. Transplant. 7, 2455–2462 (2007).

    Article  Google Scholar 

  9. 9.

    Haskins, K. & McDuffie, M. Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T-cell clone. Science 249, 1433–1436 (1990).

    Article  Google Scholar 

  10. 10.

    Roep, B. O. et al. Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes 48, 484–490 (1999).

    Article  Google Scholar 

  11. 11.

    Yolcu, E. S. et al. Apoptosis as a mechanism of T-regulatory cell homeostasis and suppression. Immunol. Cell Biol. 86, 650–658 (2008).

    Article  Google Scholar 

  12. 12.

    Ju, S. T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).

    Article  Google Scholar 

  13. 13.

    Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas–ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    Article  Google Scholar 

  14. 14.

    Arai, H., Chan, S. Y., Bishop, D. K. & Nabel, G. J. Inhibition of the alloantibody response by CD95 ligand. Nat. Med. 3, 843–848 (1997).

    Article  Google Scholar 

  15. 15.

    Lau, H. T., Yu, M., Fontana, A. & Stoeckert, C. J. Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273, 109–112 (1996).

    Article  Google Scholar 

  16. 16.

    Matsue, H. et al. Induction of antigen-specific immunosuppression by CD95L cDNA-transfected ‘killer’ dendritic cells. Nat. Med. 5, 930–937 (1999).

    Article  Google Scholar 

  17. 17.

    Min, W. P. et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J. Immunol. 164, 161–167 (2000).

    Article  Google Scholar 

  18. 18.

    Tourneur, U. et al. Transgenic expression of CD95 ligand on thyroid follicular cells confers immune privilege upon thyroid allografts. J. Immunol. 167, 1338–1346 (2001).

    Article  Google Scholar 

  19. 19.

    O'Reilly, L. A. et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659–663 (2009).

    Article  Google Scholar 

  20. 20.

    Ottonello, L., Tortolina, G., Amelotti, M. & Dallegri, F. Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J. Immunol. 162, 3601–3606 (1999).

    Google Scholar 

  21. 21.

    Yolcu, E. S., Askenasy, N., Singh, N. P., Cherradi, S. E. & Shirwan, H. Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection. Immunity 17, 795–808 (2002).

    Article  Google Scholar 

  22. 22.

    Yolcu, E. S. et al. Pancreatic islets engineered with SA-FasL protein establish robust localized tolerance by inducing regulatory T cells in mice. J. Immunol. 187, 5901–5909 (2011).

    Article  Google Scholar 

  23. 23.

    Headen, D. M., Aubry, G., Lu, H. & García, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv. Mater. 26, 3003–3008 (2014).

    Article  Google Scholar 

  24. 24.

    Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64–70 (2012).

    Article  Google Scholar 

  25. 25.

    Phelps, E. A., Headen, D. M., Taylor, W. R., Thule, P. M. & Garcia, A. J. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34, 4602–4611 (2013).

    Article  Google Scholar 

  26. 26.

    Yellen, P. et al. High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1. Cell Cycle 10, 3948–3956 (2011).

    Article  Google Scholar 

  27. 27.

    Zeiser, R. et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 111, 453–462 (2008).

    Article  Google Scholar 

  28. 28.

    Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005).

    Article  Google Scholar 

  29. 29.

    Basu, S., Golovina, T., Mikheeva, T., June, C. H. & Riley, J. L. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J. Immunol. 180, 5794–5798 (2008).

    Article  Google Scholar 

  30. 30.

    Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010).

    Article  Google Scholar 

  31. 31.

    Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  Google Scholar 

  32. 32.

    Hurez, V. et al. Chronic mTOR inhibition in mice with rapamycin alters T, B, myeloid, and innate lymphoid cells and gut flora and prolongs life of immune-deficient mice. Aging Cell 14, 945–956 (2015).

    Article  Google Scholar 

  33. 33.

    Bunnag, S. et al. FOXP3 expression in human kidney transplant biopsies is associated with rejection and time post transplant but not with favorable outcomes. Am. J. Transplant 8, 1423–1433 (2008).

    Article  Google Scholar 

  34. 34.

    Yapici, U. et al. Intragraft FOXP3 protein or mRNA during acute renal allograft rejection correlates with inflammation, fibrosis, and poor renal outcome. Transplantation 87, 1377–1380 (2009).

    Article  Google Scholar 

  35. 35.

    Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  Google Scholar 

  36. 36.

    Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    Article  Google Scholar 

  37. 37.

    Baidal, D. A. et al. Bioengineering of an intraabdominal endocrine pancreas. N. Engl. J. Med. 376, 1887–1889 (2017).

    Article  Google Scholar 

  38. 38.

    Berman, D. M. et al. Bioengineering the endocrine pancreas: intraomental islet transplantation within a biologic resorbable scaffold. Diabetes 65, 1350–1361 (2016).

    Article  Google Scholar 

  39. 39.

    Weaver, J. D. et al. Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Sci. Adv. 3, e1700184 (2017).

    Article  Google Scholar 

  40. 40.

    Stuart, P. M. et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J. Clin. Invest. 99, 396–402 (1997).

    Article  Google Scholar 

  41. 41.

    Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R. & Ferguson, T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  Google Scholar 

  42. 42.

    Takeda, Y. et al. Protection of islet allografts transplanted together with Fas ligand expressing testicular allografts. Diabetologia 41, 315–321 (1998).

    Article  Google Scholar 

  43. 43.

    Kang, S. M. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat. Med. 3, 738–743 (1997).

    Article  Google Scholar 

  44. 44.

    Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809 (1993).

    Article  Google Scholar 

Download references


This work was funded in part by the Juvenile Diabetes Research Foundation (2-SRA-2014-287-Q-R) and NIH (R21EB020107, R21AI113348, R56AI121281 and U01AI132817). Funding from the NIH Innovation and Leadership in Engineering Technologies and Therapies Postdoctoral Training (T90 DK097787 to M.M.C.), a JDRF Postdoctoral Fellowship (to J.D.W.), the NIH Ruth L. Kirschstein National Research Service Award (F30AR069472 to C.T.J.) and a National Science Foundation Graduate Fellowship (to M.D.H.) is greatly appreciated. We thank the core facilities at the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology for use of, and assistance with, shared equipment, services and expertise.

Author information




D.M.H. and M.M.C. synthesized and characterized the SA-FasL-presenting microgels. C.T.J. and M.D.H. performed the in vivo SA-FasL retention studies. D.M.H., K.B.W., M.M.C., J.D.W., H.Z., P.S. and M.T. performed the islet isolation and transplantation studies. W.S.B. produced and qualified the SA-FasL protein. K.B.W., P.S. and E.S.Y. performed the immune profiling analyses. A.J.G., L.S., E.S.Y. and H.S. conceived and designed all the experiments. D.M.H., M.M.C., E.S.Y., A.J.G. and H.S. wrote the manuscript.

Corresponding authors

Correspondence to Andrés J. García or Haval Shirwan.

Ethics declarations

Competing interests

H.S. and E.S.Y. hold equity in FasCure Therapeutics, which has an option to license the SA-FasL technology from the University of Louisville. A patent application (US 62,469,802) titled ‘FasL-engineered biomaterials with immunomodulatory function’, listing A.J.G., H.S., E.S.Y., D.M.H. and H.Z., was submitted on 9 March 2018 by the University of Louisville and Georgia Tech Research Corporation based on the results described in this manuscript.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–14

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Headen, D.M., Woodward, K.B., Coronel, M.M. et al. Local immunomodulation with Fas ligand-engineered biomaterials achieves allogeneic islet graft acceptance. Nature Mater 17, 732–739 (2018).

Download citation

Further reading


Quick links