Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Holstein polaron in a valley-degenerate two-dimensional semiconductor

Abstract

Two-dimensional (2D) crystals have emerged as a class of materials with tunable carrier density1. Carrier doping to 2D semiconductors can be used to modulate many-body interactions2 and to explore novel composite particles. The Holstein polaron is a small composite particle of an electron that carries a cloud of self-induced lattice deformation (or phonons)3,4,5, which has been proposed to play a key role in high-temperature superconductivity6 and carrier mobility in devices7. Here we report the discovery of Holstein polarons in a surface-doped layered semiconductor, MoS2, in which a puzzling 2D superconducting dome with the critical temperature of 12 K was found recently8,9,10,11. Using a high-resolution band mapping of charge carriers, we found strong band renormalizations collectively identified as a hitherto unobserved spectral function of Holstein polarons12,13,14,15,16,17,18. The short-range nature of electron–phonon (e–ph) coupling in MoS2 can be explained by its valley degeneracy, which enables strong intervalley coupling mediated by acoustic phonons. The coupling strength is found to increase gradually along the superconducting dome up to the intermediate regime, which suggests a bipolaronic pairing in the 2D superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Holstein polaron of MoS2.
Fig. 2: Spectral function of Holstein polarons.
Fig. 3: Doping dependence of polarons.
Fig. 4: Strength of e–ph coupling and superconductivity.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529, 185–189 (2016).

    Article  Google Scholar 

  3. Landau, L. D. On the motion of electrons in a crystal lattice. Phys. Z. Sowjet. 3, 664–665 (1933).

    Google Scholar 

  4. Fröhlich, H. Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

    Article  Google Scholar 

  5. Holstein, T. Studies on polaron motion. Ann. Phys. 8, 343–389 (1959).

    Article  Google Scholar 

  6. Alexandrov, A. S. Polarons in Advanced Materials (Springer, Dordrecht, 2007).

  7. Hulea, I. N. et al. Tunable Fröhlich polarons in organic single-crystal transistors. Nat. Mater. 5, 982–986 (2006).

    Article  Google Scholar 

  8. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  Google Scholar 

  9. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  Google Scholar 

  10. Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article  Google Scholar 

  11. Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotech. 11, 339–344 (2016).

    Article  Google Scholar 

  12. Engelsberg, S. & Schrieffer, J. R. Coupled electron–phonon system. Phys. Rev. 131, 993–1008 (1963).

    Article  Google Scholar 

  13. Meden, V., Schönhammer, K. & Gunnarsson, O. Electron-phonon interaction in one dimension: exact spectral properties. Phys. Rev. B 50, 11179–11182 (1994).

    Article  Google Scholar 

  14. Wellein, G. & Fehske, H. Polaron band formation in the Holstein model. Phys. Rev. B 56, 4513–4517 (1997).

    Article  Google Scholar 

  15. Bonča, J., Trugman, S. A. & Batistić, I. Holstein polaron. Phys. Rev. B 60, 1633–1642 (1999).

    Article  Google Scholar 

  16. Hohenadler, M., Aichhorn, M. & von der Linden, W. Spectral function of electron-phonon models by cluster perturbation theory. Phys. Rev. B 68, 184304 (2003).

    Article  Google Scholar 

  17. Goodvin, G. L., Berciu, M. & Sawatzky, G. A. Green’s function of the Holstein polaron. Phys. Rev. B 74, 245104 (2006).

    Article  Google Scholar 

  18. Berciu, M. & Sawatzky, G. A. Light polarons and bipolarons for a highly inhomogeneous electron–boson coupling. Eur. Phys. Lett. 81, 57008 (2008).

    Article  Google Scholar 

  19. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  Google Scholar 

  20. Perfetti, L. et al. Mobile small polarons and the Peierls transition in the quasi-one-dimensional conductor K0.3MoO3. Phys. Rev. B 66, 075107 (2002).

    Article  Google Scholar 

  21. Shen, K. M. et al. Angle-resolved photoemission studies of lattice polaron formation in the cuprate Ca2CuO2Cl2. Phys. Rev. B 75, 075115 (2007).

    Article  Google Scholar 

  22. Moser, S. et al. Tunable polaronic conduction in anatase TiO2. Phys. Rev. Lett. 110, 196403 (2013).

    Article  Google Scholar 

  23. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of T c in FeSe films on SrTiO3. Nature 515, 245–248 (2014).

    Article  Google Scholar 

  24. Chen, C., Avila, J., Frantzeskakis, E., Levy, A. & Asensio, M. C. Observation of a two-dimensional liquid of Fröhlich polarons at the bare SrTiO3 surface. Nat. Commun. 6, 8585 (2015).

    Article  Google Scholar 

  25. Wang, Z. et al. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid. Nat. Mater. 15, 835–839 (2016).

    Article  Google Scholar 

  26. Koschorreck, M. et al. Attractive and repulsive Fermi polarons in two dimensions. Nature 485, 619–622 (2012).

    Article  Google Scholar 

  27. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012).

    Article  Google Scholar 

  28. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

    Article  Google Scholar 

  29. Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  30. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors 4th edn (Springer, Heidelberg, 2010).

    Book  Google Scholar 

  31. Eknapakul, T. et al. Electronic structure of a quasi-freestanding MoS2 monolayer. Nano Lett. 14, 1312 (2014).

    Article  Google Scholar 

  32. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotech. 9, 111–115 (2014).

    Article  Google Scholar 

  33. Riley, J. M. et al. Negative electronic compressibility and tunable spin splitting in WSe2. Nat. Nanotech. 10, 1043–1047 (2015).

    Article  Google Scholar 

  34. Kang, M. et al. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017).

    Article  Google Scholar 

  35. Brumme, T., Calandra, M. & Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B 91, 155436 (2015).

    Article  Google Scholar 

  36. Hohenadler, M. et al. Photoemission spectra of many-polaron systems. Phys. Rev. B 71, 245111 (2005).

    Article  Google Scholar 

  37. Verdi, C., Caruso, F. & Giustino, F. Origin of crossover from polarons to Fermi liquids in transition metal oxides. Nat. Commun. 8, 15769 (2017).

    Article  Google Scholar 

  38. Covaci, L. & Berciu, M. Holstein polaron: the effect of coupling to multiple-phonon modes. Eur. Phys. Lett. 80, 67001 (2007).

    Article  Google Scholar 

  39. Mishchenko, A. S., Nagaosa, N. & Prokof’ev, N. Diagrammatic Monte Carlo method for many-polaron problems. Phys. Rev. Lett. 113, 166402 (2014).

    Article  Google Scholar 

  40. Covaci, L. & Berciu, M. Polaron formation in the presence of Rashba spin–orbit coupling: implications for spintronics. Phys. Rev. Lett. 102, 186403 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (grants no. 2017R1A5A1014862 and no. 2017R1A2B3011368), Future-leading Research Initiative 2017-22-0059 of Yonsei University, and the POSCO Science Fellowship of POSCO TJ Park Foundation. This work was carried out with the support of the Diamond Light Source (beamline I05). The work at the Advanced Light Source was supported by the US Department of Energy, Office of Sciences under contract no. DE-AC02-05CH11231. M.K. acknowledges the Samsung Scholarship from Samsung Foundation of Culture. We thank A. Bostwick, C. Jozwiak and E. Rotenberg for help in the ARPES experiments, and R. Comin for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.K. conducted experiments and analysed data with help from W.J.S., Y.S., S.H.R., T.K.K. and M.H. S.W.J. performed spectral-function simulations. K.S.K. directed the project. M.K. and K.S.K wrote the manuscript with contributions from all the other co-authors.

Corresponding author

Correspondence to Keun Su Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Jung, S.W., Shin, W.J. et al. Holstein polaron in a valley-degenerate two-dimensional semiconductor. Nature Mater 17, 676–680 (2018). https://doi.org/10.1038/s41563-018-0092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0092-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing