Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes

Abstract

Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1,2,3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to ‘electrify’ complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal–support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal–support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Electrifying the Pt/Co3O4(111) model catalyst prepared in UHV by in situ transfer into the electrochemical environment.
Fig. 2: Particle size effects observed on the electrified model catalyst.
Fig. 3: Electronic metal–support interactions observed on the electrified model catalyst.

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, 146 (2017).

    Article  Google Scholar 

  2. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  Google Scholar 

  3. Katsounaros, I., Cherevko, S., Zeradjanin, A. R. & Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102–121 (2014).

    Article  Google Scholar 

  4. Ertl, G. Reactions at surfaces: From atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  Google Scholar 

  5. Rodriguez, J. A. et al. Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318, 1757–1760 (2007).

    Article  Google Scholar 

  6. Schauermann, S., Nilius, N., Shaikhutdinov, S. & Freund, H. J. Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc. Chem. Res. 46, 1673–1681 (2013).

    Article  Google Scholar 

  7. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    Article  Google Scholar 

  8. Weaver, M. J. & Gao, X. P. In-situ electrochemical surface science. Annu. Rev. Phys. Chem. 44, 459–494 (1993).

    Article  Google Scholar 

  9. Kolb, D. M. Electrochemical surface science: past, present and future. J. Solid State Electrochem. 15, 1391–1399 (2011).

    Article  Google Scholar 

  10. Koper, M. T. M. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3, 2054–2073 (2011).

    Article  Google Scholar 

  11. Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of mono-crystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the (111) and (110) planes. J. Electroanal. Chem. 107, 205–209 (1980).

    Article  Google Scholar 

  12. Stamenkovic, V. R. et al. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111). J. Am. Chem. Soc. 125, 2736–2745 (2003).

    Article  Google Scholar 

  13. Schnaidt, J. et al. A combined UHV-STM-flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes. Phys. Chem. Chem. Phys. 19, 4166–4178 (2017).

    Article  Google Scholar 

  14. Mercer, M. P. & Hoster, H. E. Ultrahigh vacuum and electrocatalysis - the powers of quantitative surface imaging. Nano Energy 29, 394–413 (2016).

    Article  Google Scholar 

  15. Ardizzone, S. & Trasatti, S. Interfacial properties of oxides with technological impact in electrochemistry. Adv. Colloid Interface Sci. 64, 173–251 (1996).

    Article  Google Scholar 

  16. Müllner, M., Balajka, J., Schmid, M., Diebold, U. & Mertens, S. F. L. Self-limiting adsorption of WO3 oligomers on oxide substrates in solution. J. Phys. Chem. C 121, 19743–19750 (2017).

    Article  Google Scholar 

  17. Liang, Y. Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    Article  Google Scholar 

  18. Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    Article  Google Scholar 

  19. Meyer, W., Biedermann, K., Gubo, M., Hammer, L. & Heinz, K. Surface structure of polar Co3O4(111) films grown epitaxially on Ir(100)-(1x1). J. Phys. Condens. Matter 20, 265011 (2008).

    Article  Google Scholar 

  20. Chivot, J., Mendoza, L., Mansour, C., Pauporte, T. & Cassir, M. New insight in the behaviour of Co-H2O system at 25-150 degrees C, based on revised Pourbaix diagrams. Corros. Sci. 50, 62–69 (2008).

    Article  Google Scholar 

  21. Freund, H.-J., Meijer, G., Scheffler, M., Schlögl, R. & Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011).

    Article  Google Scholar 

  22. Liu, H. S. et al. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95–110 (2006).

    Article  Google Scholar 

  23. Tushaus, M., Schweizer, E., Hollins, P. & Bradshaw, A. M. Yet another vibrational study of the adsorption system Pt(111)-Co. J. Electron Spectrosc. Relat. Phenom. 44, 305–316 (1987).

    Article  Google Scholar 

  24. Brummel, O. et al. Stabilization of small platinum nanoparticles on Pt-CeO2 thin film electrocatalysts during methanol oxidation. J. Phys. Chem. C. 120, 19723–19736 (2016).

    Article  Google Scholar 

  25. Garcia, G., Rodriguez, P., Rosca, V. & Koper, M. T. M. Fourier transform infrared spectroscopy study of CO electro-oxidation on Pt(111) in alkaline media. Langmuir 25, 13661–13666 (2009).

    Article  Google Scholar 

  26. Stamenkovic, V., Chou, K. C., Somorjai, G. A., Ross, P. N. & Markovic, N. M. Vibrational properties of CO at the Pt(111)-solution interface: the anomalous stark-tuning slope. J. Phys. Chem. B 109, 678–680 (2005).

    Article  Google Scholar 

  27. Brummel, O. et al. Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering. Electrochim. Acta 251, 427–441 (2017).

    Article  Google Scholar 

  28. Ferstl, P. et al. Adsorption and activation of CO on Co3O4(111) thin films. J. Phys. Chem. C 119, 16688–16699 (2015).

    Article  Google Scholar 

  29. Fester, J., Sun, Z., Rodríguez-Fernández, J., Walton, A. & Lauritsen, J. V. Phase transitions of cobalt oxide bilayers on Au(111) and Pt(111): the role of edge sites and substrate interactions. J. Phys. Chem. B 122, 561–571 (2018).

    Article  Google Scholar 

  30. Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

    Article  Google Scholar 

  31. Biedermann, K., Gubo, M., Hammer, L. & Heinz, K. Phases and phase transitions of hexagonal cobalt oxide films on Ir(100)-(1 × 1). J. Phys. Condens. Matter 21, 185003 (2009).

    Article  Google Scholar 

  32. Meyer, W., Biedermann, K., Gubo, M., Hammer, L. & Heinz, K. Surface structure of polar Co3O4(111) films grown epitaxially on Ir(100)-(1 × 1). J. Phys. Condens. Matter 20, 265011 (2008).

    Article  Google Scholar 

  33. Ferstl, P. et al. Structure and ordering of oxygen on unreconstructed Ir(100). Phys. Rev. B 93, 235406 (2016).

    Article  Google Scholar 

  34. Libra J. KolXPD: Software for spectroscopy data measurement and processing, http://www.kolibrik.net/science/kolxpd/, Kolibrik.net, s.r.o., Žďár nad Sázavou, Czech Republic.

  35. Gomez, R. & Weaver, M. J. Electrochemical infrared studies of monocrystalline iridium surfaces. Part 2: carbon monoxide and nitric oxide adsorption on Ir(110). Langmuir 14, 2525–2534 (1998).

    Article  Google Scholar 

  36. Klemm, S. O., Topalov, A. A., Laska, C. A. & Mayrhofer, K. J. J. Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 13, 1533–1535 (2011).

    Article  Google Scholar 

  37. Schuppert, A. K., Topalov, A. A., Katsounaros, I., Klemm, S. O. & Mayrhofer, K. J. J. A scanning flow cell system for fully automated screening of electrocatalyst materials. J. Electrochem. Soc. 159, F670–F675 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence ‘Engineering of Advanced Materials’ (project EXC 315) (Bridge Funding) and further projects. Additional support by the DFG is acknowledged within the Research Unit FOR 1878 ‘Functional Molecular Structures on Complex Oxide Surfaces’. Furthermore, the authors acknowledge the CERIC-ERIC Consortium for the access to experimental facilities and financial support. N.T., T.S., B.Š. and V.M. acknowledge the infrastructure project no. CZ.02.1.01/0.0/0.0/16_013/0001788 and LM2015057 for the support of the SPL−MSB facility.

Author information

Authors and Affiliations

Authors

Contributions

F.F., C.S., M.B. and F.W. prepared the samples, performed the EC-IRRAS and CV measurements and analysed the data. M.B., S.C., S.G. and O.K. performed SFC experiments and analysed the data. Y.L., M.V., B.Š., T.S., N.T., A.N., K.B., K.C.P. and O.B. performed the SR-XPS experiments and the combined electrochemical and XPS experiments and analysed the data. M.B., T.W. and R.S. performed the UHV IRRAS experiments. F.X., F.F., M.A., C.S. and M.A.S. performed the STM experiments and analysed the data. V.M., K.J.J.M., O.B. and J.L. supervised the experimental work and analysed the data. J.L., Y.L. and O.B. prepared the manuscript with the support of the other co-authors.

Corresponding authors

Correspondence to Olaf Brummel or Jörg Libuda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figures 1–8, Supplementary References 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faisal, F., Stumm, C., Bertram, M. et al. Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Mater 17, 592–598 (2018). https://doi.org/10.1038/s41563-018-0088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0088-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing