Abstract
Colossal magnetoresistance (CMR) refers to a large change in electrical conductivity induced by a magnetic field in the vicinity of a metal–insulator transition and has inspired extensive studies for decades1,2. Here we demonstrate an analogous spin effect near the Néel temperature, TN = 296 K, of the antiferromagnetic insulator Cr2O3. Using a yttrium iron garnet YIG/Cr2O3/Pt trilayer, we injected a spin current from the YIG into the Cr2O3 layer and collected, via the inverse spin Hall effect, the spin signal transmitted into the heavy metal Pt. We observed a two orders of magnitude difference in the transmitted spin current within 14 K of the Néel temperature. This transition between spin conducting and non-conducting states was also modulated by a magnetic field in isothermal conditions. This effect, which we term spin colossal magnetoresistance (SCMR), has the potential to simplify the design of fundamental spintronics components, for instance, by enabling the realization of spin-current switches or spin-current-based memories.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Orthogonal interlayer coupling in an all-antiferromagnetic junction
Nature Communications Open Access 28 June 2022
-
Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3
Nature Communications Open Access 12 March 2021
-
Variable spin-charge conversion across metal-insulator transition
Nature Communications Open Access 24 January 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 9, 8171–8199 (1997).
Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Progress. Phys. 69, 797–851 (2006).
Žutić, I. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
Maekawa, S. Concepts in Spin Electronics (Oxford Univ. Press, Oxford, 2006).
Kajiwara, Y. et al. Transmission of electrical signals by spin–wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).
Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).
Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).
Cornelissen, L., Liu, J., Duine, R., Ben Youssef, J. & van Wees, B. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).
Qiu, Z. et al. Spin–current probe for phase transition in an insulator. Nat. Commun. 7, 12670 (2016).
Tserkovnyak, Y. Spintronics: an insulator-based transistor. Nat. Nanotech. 8, 706–707 (2013).
Brockhouse, B. N. Antiferromagnetic structure in Cr2O3. J. Chem. Phys. 21, 961–962 (1953).
Foner, S. High-field antiferromagnetic resonance in Cr2O3. Phys. Rev. 130, 183–197 (1963).
Nagamiya, T., Yosida, K. & Kubo, R. Antiferromagnetism. Adv. Phys. 4, 1–112 (1955).
Xiao, J. et al. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).
Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).
Wang, H., Du, C., Hammel, P. C. & Yang, F. Spin transport in antiferromagnetic insulators mediated by magnetic correlations. Phys. Rev. B 91, 220410(R) (2015).
Moriyama, T. et al. Anti-damping spin transfer torque through epitaxial nickel oxide. Appl. Phys. Lett. 106, 162406 (2015).
Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).
Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys. Condens. Matter. Inst. Phys. J. 26, 343202 (2014).
Qiu, Z., Hou, D., Uchida, K. & Saitoh, E. Influence of interface condition on spin-Seebeck effects. J. Phys. D 48, 164013 (2015).
Kikkawa, T. et al. Critical suppression of spin Seebeck effect by magnetic fields. Phys. Rev. B 92, 064413 (2015).
Tobia, D., Winkler, E., Zysler, R. D., Granada, M. & Troiani, H. E. Size dependence of the magnetic properties of antiferromagnetic Cr2O3 nanoparticles. Phys. Rev. B 78, 104412 (2008).
Pati, S. P. et al. Finite-size scaling effect on Néel temperature of antiferromagnetic Cr2O3 (0001) films in exchange-coupled heterostructures. Phys. Rev. B 94, 224417 (2016).
Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).
Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Propulsion of a domain wall in an antiferromagnet by magnons. Phys. Rev. B 90, 104406 (2014).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Moriyama, T., Oda, K. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Preprint at https://arxiv.org/abs/1708.07682 (2017).
Chen, X. Z. et al. Antidamping torque-induced switching in biaxial antiferromagnetic insulators. Preprint at https://arxiv.org/abs/1804.05462 (2018).
Vasyuchka, V. I. Microwave-induced spin currents in ferromagnetic-insulator—normal-metal bilayer system. Appl. Phys. Lett. 105, 092404 (2014).
Acknowledgements
This work was supported by JST-ERATO ‘Spin Quantum Rectification’, JST-PRESTO ‘Phase Interfaces for Highly Efficient Energy Utilization’, Grant-in-Aid for Scientific Research on Innovative Area, ‘Nano Spin Conversion Science’ (26103005 and 26103006), Grant-in-Aid for Scientific Research (S) (25220910), Grant-in-Aid for Scientific Research (A) (25247056 and 15H02012), Grant-in-Aid for Challenging Exploratory Research (26600067), Grant-in-Aid for Research Activity Start-up (25889003) and World Premier International Research Center Initiative (WPI), all from MEXT, Japan. Z.Q. acknowledges support from the ‘Fundamental Research Funds for the Central Universities (DUT17RC(3)073)’. D.H. acknowledges support from Grant-in-Aid for young scientists (B) (JP17K14331), J.B. acknowledges supports from the Graduate Program in Spintronics, Tohoku University, and Grand-in-Aid for Young Scientists (B) (17K14102). K.Y. and O.G. acknowledge support from the Humboldt Foundation and EU ERC Advanced Grant no. 268066. K.Y. acknowledges the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X and DAAD project ‘MaHoJeRo’. O.G. acknowledges the EU FET Open RIA Grant no. 766566 and the DFG (project SHARP 397322108).
Author information
Authors and Affiliations
Contributions
Z.Q. and D.H. designed the experiment, Z.Q. fabricated the samples and collected all the data. Z.Q., D.H., J.B. and K.Y. analysed the data. J.B., K.Y. and O.G. contributed theoretical discussions. E.S. supervised this study. All the authors discussed the results and prepared the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–4, Supplementary Figures 1–3, Supplementary References 1–5
Rights and permissions
About this article
Cite this article
Qiu, Z., Hou, D., Barker, J. et al. Spin colossal magnetoresistance in an antiferromagnetic insulator. Nature Mater 17, 577–580 (2018). https://doi.org/10.1038/s41563-018-0087-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-018-0087-4
This article is cited by
-
Coherent antiferromagnetic spintronics
Nature Materials (2023)
-
Orthogonal interlayer coupling in an all-antiferromagnetic junction
Nature Communications (2022)
-
Unusual Kinetic Properties of Usual Heusler Alloys
Journal of Superconductivity and Novel Magnetism (2022)
-
Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3
Nature Communications (2021)
-
Charge ordering and magnetic properties of LaxSm0.5-xCa0.5MnO3 manganite
Journal of Materials Science: Materials in Electronics (2021)