Letter | Published:

The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Hayek, K., Kramer, R. & Paal, Z. Metal–support boundary sites in catalysis. Appl. Catal. A 162, 1–15 (1997).

  2. 2.

    Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

  3. 3.

    Campbell, C. T. Catalyst-support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

  4. 4.

    Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

  5. 5.

    Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

  6. 6.

    Favez, J.-Y., Weilenmann, M. & Stilli, J. Cold start extra emissions as a function of engine stop time: evolution over the last 10 years. Atmosph. Environm. 43, 996–1007 (2009).

  7. 7.

    Twigg, M. V. Catalytic control of emissions from cars. Catal. Today 163, 33–41 (2011).

  8. 8.

    Rioux, R. M., Song, H., Hoefelmeyer, J. D., Yang, P. & Somorjai, G. A. High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B 109, 2192–2202 (2005).

  9. 9.

    Mudiyanselage, K. et al. Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 52, 5101–5105 (2013).

  10. 10.

    Shao, X. et al. Tailoring the shape of metal adparticles by doping the oxide support. Angew. Chem. Int. Ed. 50, 11525–11527 (2011).

  11. 11.

    Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Jr Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

  12. 12.

    Widmann, D. & Behm, R. J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. Acc. Chem. Res. 47, 740–749 (2014).

  13. 13.

    Pan, Q. et al. Enhanced CO oxidation on the oxide/metal interface: from ultra-high vacuum to near-atmospheric pressures. ChemCatChem 7, 2620–2627 (2015).

  14. 14.

    Suchorski, Y., Wrobel, R., Becker, S. & Weiss, H. CO oxidation on a CeO x /Pt(111) inverse model catalyst surface: catalytic promotion and tuning of kinetic phase diagrams. J. Phys. Chem. C 112, 20012–20017 (2008).

  15. 15.

    Brummel, O. et al. Stabilization of small platinum nanoparticles on Pt–CeO2 thin film electrocatalysts during methanol oxidation. J. Phys. Chem. C. 120, 19723–19726 (2016).

  16. 16.

    Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

  17. 17.

    Zhdanov, V. P. & Kasemo, B. Kinetic phase transitions in simple reactions on solid surfaces. Surf. Sci. Rep. 20, 113–189 (1994).

  18. 18.

    Ertl, G. Reactions at Solid Surfaces (Wiley, Hoboken, NJ, 2009).

  19. 19.

    Vogel, D. et al. Local catalytic ignition during CO oxidation on low-index Pt and Pd surfaces: a combined PEEM, MS, and DFT study. Angew. Chem. Int. Ed. 51, 10041–10044 (2012).

  20. 20.

    Datler, M., Bespalov, I., Rupprechter, G. & Suchorski, Y. Analysing the reaction kinetics for individual catalytically active components: CO oxidation on a Pd powder supported by Pt foil. Catal. Lett. 145, 1120–1125 (2015).

  21. 21.

    Vogel, D. et al. The role of defects in the local reaction kinetics of CO oxidation on low-index Pd surfaces. J. Phys. Chem. C 117, 12054–12060 (2013).

  22. 22.

    Rupprechter, G. Sum frequency generation and polarization–modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv. Catal. 51, 133–263 (2007).

  23. 23.

    Kozlov, S. M., Aleksandrov, H. A., Goniakowski, J. & Neyman, K. M. Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49–155 atoms. J. Chem. Phys. 139, 084701 (2013).

  24. 24.

    Bespalov, I. et al. Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM and XPS study. Ultramicroscopy 159, 147–151 (2015).

  25. 25.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  26. 26.

    Hammer, B., Hansen, L. & Nørskov, J. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

  27. 27.

    Viñes, F., Illas, F. & Neyman, K. M. On the mechanism of formation of metal nanowires by self-assembly. Angew. Chem. Int. Ed. 46, 7094–7097 (2007).

Download references


This work was financially supported by the Austrian Science Fund (FWF) through project SFB FOXSI (F4504/02-N16) and by the Spanish MINECO/FEDER grant CTQ2015-64618-R and by grants 2017SGR13 and XRQTC of the Generalitat de Catalunya. The authors thank the Red Española de Supercomputación for the computer resources and technical support.

Author information

I.B., M.D., D.V. and Z.B. performed the PEEM experiments. Y.S. and G.R. supervised the experimental work and were involved in the analysis of the experimental data and the preparation of the manuscript. S.M.K. performed the DFT calculations and K.M.N. supervised the theoretical work. S.M.K. and K.M.N. analysed the calculated data and were involved in the preparation of the manuscript. All the authors contributed to the discussion and approved the manuscript. Y.S. and S.M.K. contributed equally to this work.

Correspondence to Konstantin M. Neyman or Günther Rupprechter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8; Key calculated structures: CO molecule; O2 molecule; Pd119 particle; 2xO/Pd119 particle; 2xCO/Pd119 particle; Pd119/ZrO2(111) structure; 2xO/Pd119/ZrO2(111) structure; 2xCO/Pd119/ZrO2(111) structure; Pd119/MgO(100) structure; 2xO/Pd119/MgO(100) structure; 2xCO/Pd119/MgO(100) structure; Supplementary References 1–23

PEEM Video

PEEM video of CO oxidation on Pd-ZrO2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Long-range effect of the metal/oxide interface on CO oxidation on Pd.
Fig. 2: Kinetic data for CO oxidation on Pd.
Fig. 3: Adsorption energies of O on Pd aggregates.