The Starshot Breakthrough Initiative established in 2016 sets an audacious goal of sending a spacecraft beyond our Solar System to a neighbouring star within the next half-century. Its vision for an ultralight spacecraft that can be accelerated by laser radiation pressure from an Earth-based source to ~20% of the speed of light demands the use of materials with extreme properties. Here we examine stringent criteria for the lightsail design and discuss fundamental materials challenges. We predict that major research advances in photonic design and materials science will enable us to define the pathways needed to realize laser-driven lightsails.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Swarm of lightsail nanosatellites for Solar System exploration
Scientific Reports Open Access 09 November 2023
-
Increasing the stability margins using multi-pattern metasails and multi-modal laser beams
Scientific Reports Open Access 21 November 2022
-
Multilayers for directed energy accelerated lightsails
Communications Materials Open Access 05 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Change history
12 October 2018
In the version of this Perspective originally published, Fig. 1 was missing the following credit line from the caption: ‘Background image from ESA/Hubble (A. Fujii).’ This has now been corrected in the online versions of the Perspective.
16 August 2018
In the version of this Perspective originally published, the titles of the references were missing; all versions have now been amended to include them.
References
Breakthrough Starshot. Breakthrough Initiatives https://breakthroughinitiatives.org/Initiative/3 (2018).
Lubin, P. J. Br. Interplanet. Soc. 69, 40–72 (2016).
Marx, G. Nature 211, 22–23 (1966).
McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications (Springer, London, 2013).
Small solar power sail demonstrator for “IKAROS”. Jaxa http://global.jaxa.jp/projects/sat/ikaros/index.html (2015).
Tsuda, Y. et al. Acta Astronaut. 69, 833–840 (2011).
Hughes, G. B. et al. Proc. SPIE 9226, 922603 (2014).
Fan, T. Y. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
Liu, Z., Zhou, P., Xu, X., Wang, X. & Ma, Y. Sci. China Technol. Sci. 56, 1597–1606 (2013).
Brignon, A. Coherent Laser Beam Combining. (Wiley, New York, NY, 2013).
Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light. 2nd edn, (Princeton Univ. Press, Princeton, NJ, 2008).
Yu, N. & Capasso, F. Nat. Mater. 13, 139–150 (2014).
Palik, E. D. Handbook of Optical Constants of Solids. (Academic, San Diego, CA, 1998).
Beal, A. R. & Hughes, H. P. J. Phys. C Solid State Phys. 12, 881–890 (1979).
Elkorashy, A. M. Phys. Status Solidi 149, 747–758 (1988).
Aspnes, D. E., Kelso, S. M., Logan, R. A. & Bhat, R. J. Appl. Phys. 60, 754–767 (1986).
Kannewurf, C. R. & Cashman, R. J. J. Phys. Chem. Solids 22, 293–298 (1961).
Jackson, W. B. & Amer, N. M. Phys. Rev. B 25, 5559–5562 (1982).
Roxlo, C. B., Chianelli, R. R., Deckman, H. W., Ruppert, A. F. & Wong, P. P. J. Vac. Sci. Technol. 5, 555–557 (1987).
Amato, G., Benedetto, G., Boarino, L., Maringelli, M. & Spagnolo, R. IEE Proc. A Sci. Meas. Technol. 139, 161–168 (1992).
Nesládek, M., Vaněček, M., Rosa, J., Quaeyhaegens, C. & Stals, L. M. Diam. Relat. Mater. 4, 697–701 (1995).
Keevers, M. J. & Green, M. A. Appl. Phys. Lett. 66, 174–176 (1995).
Webber, D. et al. Appl. Phys. Lett. 105, 182109 (2014).
Jo, M.-H. et al. Thin Solid Films 308–309, 490–494 (1997).
Leventis, N., Sotiriou-Leventis, C., Zhang, G. & Rawashdeh, A.-M. M. Nano Lett. 2, 957–960 (2002).
Pierre, A. C. & Pajonk, G. M. Chem. Rev. 102, 4243–4266 (2002).
Zu, G. et al. Chem. Mater. 25, 4757–4764 (2013).
Wu, S. et al. Thin Solid Films 628, 81–87 (2017).
Macchi, A., Veghini, S. & Pegoraro, F. Phys. Rev. Lett. 103, (2009).
Johnson, S. G. Read the Docs http://ab-initio.mit.edu/nlopt (2008).
Bendsøe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods and Applications (Springer, Berlin, 2003) .
Borel, P. I. et al. Opt. Express 12, 1996–2001 (2004).
Piggott, A. Y. et al. Nat. Photon. 9, 374–377 (2015).
Alcaraz, J. et al. Phys. Lett. B 490, 27–35 (2000).
Alcaraz, J. et al. Phys. Lett. B 494, 193–202 (2000).
Hoang, T., Lazarian, A., Burkhart, B. & Loeb, A. Astrophys. J. 837, 5 (2017).
Zook, H. A. in Accretion Extraterr. Matter Throughout Earth’s History (eds Peucker-Ehrenbrink, B. & Schmitz, B.) 75–92 (Springer, New York, NY, 2001).
Green, M. A. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).
Timans, P. J. J. Appl. Phys. 74, 6353–6364 (1993).
Rogne, H., Timans, P. J. & Ahmed, H. Appl. Phys. Lett. 69, 2190–2192 (1996).
Boccara, A. C., Jackson, W., Amer, N. M. & Fournier, D. Opt. Lett. 5, 377–379 (1980).
Jackson, W. B., Amer, N. M., Boccara, A. C. & Fournier, D. Appl. Opt. 20, 1333–1344 (1981).
Rosencwaig, A. & Gersho, A. J. Appl. Phys. 47, 64–69 (1976).
Vahala, K. J. Nature 424, 839–846 (2003).
Akahane, Y., Asano, T., Song, B.-S. & Noda, S. Nature 425, 944–947 (2003).
Zammit, U. et al. J. Appl. Phys. 69, 2577–2580 (1991).
Holovský, J., Remeš, Z., De Wolf, S. & Ballif, C. Energy Procedia 60, 57–62 (2014).
Yu, G. et al. Appl. Phys. Lett. 70, 3209–3211 (1997).
Shvets, V. A., Spesivtsev, E. V., Rykhlitskii, S. V. & Mikhailov, N. N. Nanotechnol. Russ. 4, 201–214 (2009).
Mandelis, A. J. Appl. Phys. 54, 3404–3409 (1983).
Manchester, Z. & Loeb, A. Astrophys. J. 837, L20 (2017).
Rios-Reyes, L. Solar Sails: Modeling, Estimation, and Trajectory Control. PhD Thesis, Univ. Michigan (2006).
Popova, H., Efendiev, M. & Gabitov, I. Preprint at https://arxiv.org/abs/1610.08043 (2016).
Schamiloglu, E. et al. AIP Conf. Proc. 552, 559–564 (2001).
Benford, J. et al. AIP Conf. Proc. 608, 457–461 (2002).
Srinivasan, P. et al. Proc. SPIE 9981, 998105 (2016).
Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Nat. Photon. 8, 899–907 (2014).
Ultra-thin glass. SCHOTT https://go.nature.com/2uQZihl (2018)
Brendel, R. Jpn J. Appl. Phys. 40, 4431–4439 (2001).
Schwander, M. & Partes, K. Diam. Relat. Mater. 20, 1287–1301 (2011).
Maleville, C. & Mazuré, C. Solid. State. Electron. 48, 1055–1063 (2004).
Shi, Y., Li, H. & Li, L.-J. Chem. Soc. Rev. 44, 2744–2756 (2015).
Li, H., Li, Y., Aljarb, A., Shi, Y. & Li, L.-J. Chem. Rev. https://doi.org/10.1021/acs.chemrev.7b00212 (2017).
Petrich, M., Stambke, M. & Bergmann, J. P. Phys. Procedia 56, 768–775 (2014).
Ogawa, H., Yang, M., Matsumoto, Y. & Guo, W. J. Solid Mech. Mater. Eng. 3, 647–655 (2009).
Zhang, M. Science 306, 1358–1361 (2004).
Wang, J., Lee, C. H. & Yap, Y. K. Nanoscale 2, 2028–2034 (2010).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Atwater, H.A., Davoyan, A.R., Ilic, O. et al. Materials challenges for the Starshot lightsail. Nature Mater 17, 861–867 (2018). https://doi.org/10.1038/s41563-018-0075-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-018-0075-8
This article is cited by
-
Swarm of lightsail nanosatellites for Solar System exploration
Scientific Reports (2023)
-
Enabling smart vision with metasurfaces
Nature Photonics (2023)
-
Multilayers for directed energy accelerated lightsails
Communications Materials (2022)
-
Increasing the stability margins using multi-pattern metasails and multi-modal laser beams
Scientific Reports (2022)
-
Light–matter coupling in large-area van der Waals superlattices
Nature Nanotechnology (2022)