The Starshot Breakthrough Initiative established in 2016 sets an audacious goal of sending a spacecraft beyond our Solar System to a neighbouring star within the next half-century. Its vision for an ultralight spacecraft that can be accelerated by laser radiation pressure from an Earth-based source to ~20% of the speed of light demands the use of materials with extreme properties. Here we examine stringent criteria for the lightsail design and discuss fundamental materials challenges. We predict that major research advances in photonic design and materials science will enable us to define the pathways needed to realize laser-driven lightsails.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 12 October 2018

    In the version of this Perspective originally published, Fig. 1 was missing the following credit line from the caption: ‘Background image from ESA/Hubble (A. Fujii).’ This has now been corrected in the online versions of the Perspective.

  • 16 August 2018

    In the version of this Perspective originally published, the titles of the references were missing; all versions have now been amended to include them.

References

  1. 1.

    Breakthrough Starshot. Breakthrough Initiatives https://breakthroughinitiatives.org/Initiative/3 (2018).

  2. 2.

    Lubin, P. J. Br. Interplanet. Soc. 69, 40–72 (2016).

  3. 3.

    Marx, G. Nature 211, 22–23 (1966).

  4. 4.

    McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications (Springer, London, 2013).

  5. 5.

    Small solar power sail demonstrator for “IKAROS”. Jaxa http://global.jaxa.jp/projects/sat/ikaros/index.html (2015).

  6. 6.

    Tsuda, Y. et al. Acta Astronaut. 69, 833–840 (2011).

  7. 7.

    Hughes, G. B. et al. Proc. SPIE 9226, 922603 (2014).

  8. 8.

    Fan, T. Y. IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).

  9. 9.

    Liu, Z., Zhou, P., Xu, X., Wang, X. & Ma, Y. Sci. China Technol. Sci. 56, 1597–1606 (2013).

  10. 10.

    Brignon, A. Coherent Laser Beam Combining. (Wiley, New York, NY, 2013).

  11. 11.

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light. 2nd edn, (Princeton Univ. Press, Princeton, NJ, 2008).

  12. 12.

    Yu, N. & Capasso, F. Nat. Mater. 13, 139–150 (2014).

  13. 13.

    Palik, E. D. Handbook of Optical Constants of Solids. (Academic, San Diego, CA, 1998).

  14. 14.

    Beal, A. R. & Hughes, H. P. J. Phys. C Solid State Phys. 12, 881–890 (1979).

  15. 15.

    Elkorashy, A. M. Phys. Status Solidi 149, 747–758 (1988).

  16. 16.

    Aspnes, D. E., Kelso, S. M., Logan, R. A. & Bhat, R. J. Appl. Phys. 60, 754–767 (1986).

  17. 17.

    Kannewurf, C. R. & Cashman, R. J. J. Phys. Chem. Solids 22, 293–298 (1961).

  18. 18.

    Jackson, W. B. & Amer, N. M. Phys. Rev. B 25, 5559–5562 (1982).

  19. 19.

    Roxlo, C. B., Chianelli, R. R., Deckman, H. W., Ruppert, A. F. & Wong, P. P. J. Vac. Sci. Technol. 5, 555–557 (1987).

  20. 20.

    Amato, G., Benedetto, G., Boarino, L., Maringelli, M. & Spagnolo, R. IEE Proc. A Sci. Meas. Technol. 139, 161–168 (1992).

  21. 21.

    Nesládek, M., Vaněček, M., Rosa, J., Quaeyhaegens, C. & Stals, L. M. Diam. Relat. Mater. 4, 697–701 (1995).

  22. 22.

    Keevers, M. J. & Green, M. A. Appl. Phys. Lett. 66, 174–176 (1995).

  23. 23.

    Webber, D. et al. Appl. Phys. Lett. 105, 182109 (2014).

  24. 24.

    Jo, M.-H. et al. Thin Solid Films 308–309, 490–494 (1997).

  25. 25.

    Leventis, N., Sotiriou-Leventis, C., Zhang, G. & Rawashdeh, A.-M. M. Nano Lett. 2, 957–960 (2002).

  26. 26.

    Pierre, A. C. & Pajonk, G. M. Chem. Rev. 102, 4243–4266 (2002).

  27. 27.

    Zu, G. et al. Chem. Mater. 25, 4757–4764 (2013).

  28. 28.

    Wu, S. et al. Thin Solid Films 628, 81–87 (2017).

  29. 29.

    Macchi, A., Veghini, S. & Pegoraro, F. Phys. Rev. Lett. 103, (2009).

  30. 30.

    Johnson, S. G. Read the Docs http://ab-initio.mit.edu/nlopt (2008).

  31. 31.

    Bendsøe, M. P. & Sigmund, O. Topology Optimization: Theory, Methods and Applications (Springer, Berlin, 2003) .

  32. 32.

    Borel, P. I. et al. Opt. Express 12, 1996–2001 (2004).

  33. 33.

    Piggott, A. Y. et al. Nat. Photon. 9, 374–377 (2015).

  34. 34.

    Alcaraz, J. et al. Phys. Lett. B 490, 27–35 (2000).

  35. 35.

    Alcaraz, J. et al. Phys. Lett. B 494, 193–202 (2000).

  36. 36.

    Hoang, T., Lazarian, A., Burkhart, B. & Loeb, A. Astrophys. J. 837, 5 (2017).

  37. 37.

    Zook, H. A. in Accretion Extraterr. Matter Throughout Earth’s History (eds Peucker-Ehrenbrink, B. & Schmitz, B.) 75–92 (Springer, New York, NY, 2001).

  38. 38.

    Green, M. A. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).

  39. 39.

    Timans, P. J. J. Appl. Phys. 74, 6353–6364 (1993).

  40. 40.

    Rogne, H., Timans, P. J. & Ahmed, H. Appl. Phys. Lett. 69, 2190–2192 (1996).

  41. 41.

    Boccara, A. C., Jackson, W., Amer, N. M. & Fournier, D. Opt. Lett. 5, 377–379 (1980).

  42. 42.

    Jackson, W. B., Amer, N. M., Boccara, A. C. & Fournier, D. Appl. Opt. 20, 1333–1344 (1981).

  43. 43.

    Rosencwaig, A. & Gersho, A. J. Appl. Phys. 47, 64–69 (1976).

  44. 44.

    Vahala, K. J. Nature 424, 839–846 (2003).

  45. 45.

    Akahane, Y., Asano, T., Song, B.-S. & Noda, S. Nature 425, 944–947 (2003).

  46. 46.

    Zammit, U. et al. J. Appl. Phys. 69, 2577–2580 (1991).

  47. 47.

    Holovský, J., Remeš, Z., De Wolf, S. & Ballif, C. Energy Procedia 60, 57–62 (2014).

  48. 48.

    Yu, G. et al. Appl. Phys. Lett. 70, 3209–3211 (1997).

  49. 49.

    Shvets, V. A., Spesivtsev, E. V., Rykhlitskii, S. V. & Mikhailov, N. N. Nanotechnol. Russ. 4, 201–214 (2009).

  50. 50.

    Mandelis, A. J. Appl. Phys. 54, 3404–3409 (1983).

  51. 51.

    Manchester, Z. & Loeb, A. Astrophys. J. 837, L20 (2017).

  52. 52.

    Rios-Reyes, L. Solar Sails: Modeling, Estimation, and Trajectory Control. PhD Thesis, Univ. Michigan (2006).

  53. 53.

    Popova, H., Efendiev, M. & Gabitov, I. Preprint at https://arxiv.org/abs/1610.08043 (2016).

  54. 54.

    Schamiloglu, E. et al. AIP Conf. Proc. 552, 559–564 (2001).

  55. 55.

    Benford, J. et al. AIP Conf. Proc. 608, 457–461 (2002).

  56. 56.

    Srinivasan, P. et al. Proc. SPIE 9981, 998105 (2016).

  57. 57.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Nat. Photon. 8, 899–907 (2014).

  58. 58.

    Ultra-thin glass. SCHOTT https://go.nature.com/2uQZihl (2018)

  59. 59.

    Brendel, R. Jpn J. Appl. Phys. 40, 4431–4439 (2001).

  60. 60.

    Schwander, M. & Partes, K. Diam. Relat. Mater. 20, 1287–1301 (2011).

  61. 61.

    Maleville, C. & Mazuré, C. Solid. State. Electron. 48, 1055–1063 (2004).

  62. 62.

    Shi, Y., Li, H. & Li, L.-J. Chem. Soc. Rev. 44, 2744–2756 (2015).

  63. 63.

    Li, H., Li, Y., Aljarb, A., Shi, Y. & Li, L.-J. Chem. Rev. https://doi.org/10.1021/acs.chemrev.7b00212 (2017).

  64. 64.

    Petrich, M., Stambke, M. & Bergmann, J. P. Phys. Procedia 56, 768–775 (2014).

  65. 65.

    Ogawa, H., Yang, M., Matsumoto, Y. & Guo, W. J. Solid Mech. Mater. Eng. 3, 647–655 (2009).

  66. 66.

    Zhang, M. Science 306, 1358–1361 (2004).

  67. 67.

    Wang, J., Lee, C. H. & Yap, Y. K. Nanoscale 2, 2028–2034 (2010).

Download references

Author information

Affiliations

  1. Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California, USA

    • Harry A. Atwater
    • , Artur R. Davoyan
    • , Ognjen Ilic
    • , Deep Jariwala
    • , Michelle C. Sherrott
    •  & Joeson Wong
  2. Department of Physics, California Institute of Technology, Pasadena, California, USA

    • Cora M. Went
    •  & William S. Whitney

Authors

  1. Search for Harry A. Atwater in:

  2. Search for Artur R. Davoyan in:

  3. Search for Ognjen Ilic in:

  4. Search for Deep Jariwala in:

  5. Search for Michelle C. Sherrott in:

  6. Search for Cora M. Went in:

  7. Search for William S. Whitney in:

  8. Search for Joeson Wong in:

Corresponding author

Correspondence to Harry A. Atwater.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0075-8

Further reading