Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Present status and future prospects of perovskite photovoltaics

Solar cells based on metal halide perovskites continue to approach their theoretical performance limits thanks to worldwide research efforts. Mastering the materials properties and addressing stability may allow this technology to bring profound transformations to the electric power generation industry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light emission and voltage losses in perovskite solar cells.
Fig. 2: Material production capacity and environmental impact.
Fig. 3: Patents and PV technologies under development.

References

  1. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506 (2014).

    Article  CAS  Google Scholar 

  2. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  CAS  Google Scholar 

  3. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  Google Scholar 

  4. Wang, Z. P. et al. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017).

    Article  CAS  Google Scholar 

  5. Asghar, M. I., Zhang, J., Wang, H. & Lund, P. D. Device stability of perovskite solar cells — a review. Renew. Sustain. Energy Rev. 77, 131–146 (2017).

    Article  CAS  Google Scholar 

  6. Green, M. A. & Ho-Baillie, A. Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett. 2, 822–830 (2017).

    Article  CAS  Google Scholar 

  7. Manser, J. S., Saidaminov, M. I., Christians, J. A., Bakr, O. M. & Kamat, P. V. Making and breaking of lead halide perovskites. Acc. Chem. Res. 49, 330–338 (2016).

    Article  CAS  Google Scholar 

  8. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit. IEEE J. Photovoltaics 2, 303–311 (2012).

    Article  Google Scholar 

  9. Green, M. A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovoltaics Res. Appl. 20, 472–476 (2012).

    Article  CAS  Google Scholar 

  10. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  CAS  Google Scholar 

  11. Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  CAS  Google Scholar 

  12. Pazos-Outón, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    Article  Google Scholar 

  13. Nayak, P. K. & Cahen, D. Updated assessment of possibilities and limits for solar cells. Adv. Mater. 26, 1622–1628 (2014).

    Article  CAS  Google Scholar 

  14. Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  CAS  Google Scholar 

  15. Wolff, C. M. et al. Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017).

    Article  Google Scholar 

  16. Steirer, K. X. et al. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 1, 360–366 (2016).

    Article  CAS  Google Scholar 

  17. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  18. Yan, K. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

    Article  CAS  Google Scholar 

  19. Noel, N. K. et al. Unveiling the Influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1, 328–343 (2017).

    Article  CAS  Google Scholar 

  20. Moore, D. T. et al. Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015).

    Article  CAS  Google Scholar 

  21. Wang, F., Yu, H., Xu, H. & Zhao, N. HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells. Adv. Functional Mater. 25, 1120–1126 (2015).

    Article  CAS  Google Scholar 

  22. Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23 (2016).

    Article  Google Scholar 

  23. Green, M. A. Third generation photovoltaics: solar cells for 2020 and beyond. Physica E Low Dimens. Syst. Nanostruct. 14, 65–70 (2002).

    Article  CAS  Google Scholar 

  24. Eperon, G. E., Horantner, M. T. & Snaith, H. J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1, 0095 (2017).

    Article  CAS  Google Scholar 

  25. Lal, N. N. et al. Perovskite tandem solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.201602761 (2017).

    Article  Google Scholar 

  26. Horantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  CAS  Google Scholar 

  27. Kim, J., Lee, S.-H., Lee, J. H. & Hong, K.-H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).

    Article  CAS  Google Scholar 

  28. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).

    Article  CAS  Google Scholar 

  29. Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  Google Scholar 

  30. Brandt, R. E. et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).

    Article  CAS  Google Scholar 

  31. Hoye, R. L. Z. et al. Perovskite-inspired photovoltaic materials: toward best practices in materials characterization and calculations. Chem. Mater. 29, 1964–1988 (2017).

    Article  CAS  Google Scholar 

  32. Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).

    Article  CAS  Google Scholar 

  33. Greul, E., Petrus, M., Binek, A., Docampo, P. & Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. J. Mater. Chem. A 5, 19972–19981 (2017).

    Article  CAS  Google Scholar 

  34. Quan, L. N. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).

    Article  CAS  Google Scholar 

  35. Hu, Y. et al. Hybrid perovskite/perovskite heterojunction solar cells. ACS Nano 10, 5999–6007 (2016).

    Article  CAS  Google Scholar 

  36. Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T. & Bulovic, V. Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015).

    Article  CAS  Google Scholar 

  37. Celik, I. et al. Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy Environ. Sci. 10, 1874–1884 (2017).

    Article  CAS  Google Scholar 

  38. Perovskite photovoltaic: A review of the patent landscape. Cintelliq https://go.nature.com/2IGsIR9 (2018).

  39. Wesoff, E. Rest in peace: the list of deceased solar companies. GreenTechMedia (6 April 2013).

Download references

Acknowledgements

H.S. is funded by the EPSRC, UK and the European Union’s Horizon 2020 framework programme for research and innovation under grant agreement no. 653296 of the CHEOPS project. H.S. thanks P. Nayak for providing adaptations to Fig. 1c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Snaith.

Ethics declarations

Competing interests

H.S. is co-founder and Chief Scientific Officer of Oxford Photovoltaics Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nature Mater 17, 372–376 (2018). https://doi.org/10.1038/s41563-018-0071-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0071-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene