Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly reversible zinc metal anode for aqueous batteries

Subjects

Abstract

Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g–1), low potential (−0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMn2O4 or O2 cathodes—the former deliver 180 W h kg–1 while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg–1 (1,000 W h kg–1 based on the cathode) for >200 cycles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characterization of the Zn anode in HCZE (1 m Zn(TFSI)2 + 20 m LiTFSI).
Fig. 2: The effect of LiTFSI concentration on the cation solvation-sheath structure and bulk properties.
Fig. 3: MD studies of the Zn2+-solvation structure.
Fig. 4: Electrochemical performance of the Zn/LiMn2O4 full cell.
Fig. 5: Electrochemical performance of the aqueous Zn/O2 full cell.

References

  1. 1.

    Kundu, D., Adams, B. D., Duffort, V., Vajargah, S. H. & Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  Google Scholar 

  2. 2.

    Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  Google Scholar 

  3. 3.

    Parker, J. F. et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    Article  Google Scholar 

  4. 4.

    Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  Google Scholar 

  5. 5.

    Yesibolati, N. et al. High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim. Acta. 152, 505–511 (2015).

    Article  Google Scholar 

  6. 6.

    Wu, X. et al. The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive. J. Power Sources 300, 453–459 (2015).

    Article  Google Scholar 

  7. 7.

    Trocoli, R. & La Mantia, F. An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem. 8, 481–485 (2015).

    Article  Google Scholar 

  8. 8.

    Wang, X. et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28, 4904–4911 (2016).

    Article  Google Scholar 

  9. 9.

    Zhang, L., Chen, L., Zhou, X. & Liu, Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015).

    Article  Google Scholar 

  10. 10.

    Liu, Z. et al. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew. Chem. Int. Ed. 55, 2889–2893 (2016).

    Article  Google Scholar 

  11. 11.

    Li, Y. & Dai, H. Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014).

    Article  Google Scholar 

  12. 12.

    Li, G., Yang, Z., Jiang, Y., Zhang, W. & Huang, Y. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 308, 52–57 (2016).

    Article  Google Scholar 

  13. 13.

    Zhang, H., Du, Q., Li, C. & Sun, X. Binary ion batteries operating on the model of Newton’s cradle. J. Electrochem. Soc. 159, A2001–A2004 (2012).

    Article  Google Scholar 

  14. 14.

    Yan, J. et al. Rechargeable hybrid aqueous batteries. J. Power Sources 216, 222–226 (2012).

    Article  Google Scholar 

  15. 15.

    Xu, M., Ivey, D. G., Xie, Z. & Qu, W. Rechargeable Zn–air batteries: progress in electrolyte development and cell configuration advancement. J. Power Sources 283, 358–371 (2015).

    Article  Google Scholar 

  16. 16.

    Fu, J. et al. Flexible high-energy polymer-electrolyte-based rechargeable zinc–air batteries. Adv. Mater. 27, 5617–5622 (2015).

    Article  Google Scholar 

  17. 17.

    Pei, P., Wang, K. & Ma, Z. Technologies for extending zinc–air battery’s cyclelife: a review. Appl. Energy 128, 315–324 (2014).

    Article  Google Scholar 

  18. 18.

    Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  19. 19.

    Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article  Google Scholar 

  20. 20.

    Parker, J. F. et al. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn–air cells. ACS Appl. Mater. Interfaces 6, 19471–19476 (2014).

    Article  Google Scholar 

  21. 21.

    Parker, J. F., Chervin, C. N., Nelson, E. S., Rolison, D. R. & Long, J. W. Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling. Energy Environ. Sci. 7, 1117 (2014).

    Article  Google Scholar 

  22. 22.

    Chamoun, M. et al. Hyper-dendritic nanoporous zinc foam anodes. NPG Asia Mater. 7, e178 (2015).

    Article  Google Scholar 

  23. 23.

    Banik, S. J. & Akolkar, R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive. J. Electrochem. Soc. 160, D519–D523 (2013).

    Article  Google Scholar 

  24. 24.

    Suo, L. et al. 'Water-in-salt' electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  Google Scholar 

  25. 25.

    Guerfi, A. et al. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte. J. Power Sources 248, 1099–1104 (2014).

    Article  Google Scholar 

  26. 26.

    Xu, M., Ivey, D. G., Xie, Z., Qu, W. & Dy, E. The state of water in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide and its effect on Zn/Zn(ii) redox behavior. Electrochim. Acta. 97, 289–295 (2013).

    Article  Google Scholar 

  27. 27.

    Xu, M., Ivey, D. G., Xie, Z. & Qu, W. Electrochemical behavior of Zn/Zn(ii) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochim. Acta. 89, 756–762 (2013).

    Article  Google Scholar 

  28. 28.

    Xu, M. et al. Zn/Zn(ii) redox kinetics and Zn deposit morphology in water added ionic liquids with bis(trifluoromethanesulfonyl)imide anions. J. Electrochem. Soc. 161, A128–A136 (2013).

    Article  Google Scholar 

  29. 29.

    Han, S. D. et al. Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl. Mater. Interfaces 8, 3021–3031 (2016).

    Google Scholar 

  30. 30.

    Liu, Z., El Abedin, S. Z. & Endres, F. Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid–water mixtures. Electrochem. Commun. 58, 46–50 (2015).

    Article  Google Scholar 

  31. 31.

    Barnum, D. W. Hydrolysis of cations. Formation constants and standard free energies of formation of hydroxy complexes. Inorg. Chem. 22, 2297–2305 (1983).

    Article  Google Scholar 

  32. 32.

    Sze, Y.-K. & Irish, D. E. Vibrational spectral studies of ion–ion and ion–solvent interactions. I. Zinc nitrate in water. J. Solut. Chem. 7, 395–415 (1978).

    Article  Google Scholar 

  33. 33.

    Smith, G. D., Bell, R., Borodin, O. & Jaffe, R. L. A density functional theory study of the structure and energetics of zincate complexes. J. Phys. Chem. A 105, 6506–6512 (2001).

    Article  Google Scholar 

  34. 34.

    Barnum, D. W. Hydrolysis of cations—formation-constants and standard free-energies of formation of hydroxy complexes. Inorg. Chem. 22, 2297–2305 (1983).

    Article  Google Scholar 

  35. 35.

    Scatena, L., Brown, M. & Richmond, G. Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001).

    Article  Google Scholar 

  36. 36.

    Borodin, O. et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 11, 10462–10471 (2017).

    Article  Google Scholar 

  37. 37.

    Smith, A., Burns, J. & Dahn, J. A high precision study of the Coulombic efficiency of Li-ion batteries. Electrochem. Solid State Lett. 13, A177–A179 (2010).

    Article  Google Scholar 

  38. 38.

    Burns, J. et al. Predicting and extending the lifetime of Li-ion batteries. J. Electrochem. Soc. 160, A1451–A1456 (2013).

    Article  Google Scholar 

  39. 39.

    Zhang, J. et al. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc–air batteries. Adv. Energy Mater. 6, 1600476 (2016).

    Article  Google Scholar 

  40. 40.

    Xu, N. et al. Self-assembly formation of bi-functional Co3O4/MnO2–CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc–air battery. Sci. Rep. 6, 33590 (2016).

    Article  Google Scholar 

  41. 41.

    Suren, S. & Kheawhom, S. Development of a high energy density flexible zinc–air battery. J. Electrochem. Soc. 163, A846–A850 (2016).

    Article  Google Scholar 

  42. 42.

    Liu, X. et al. High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy 20, 315–325 (2016).

    Article  Google Scholar 

  43. 43.

    Li, G. et al. Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal–air batteries. Angew. Chem. Int. Ed. 55, 4977–4982 (2016).

    Article  Google Scholar 

  44. 44.

    Kar, M., Simons, T. J., Forsyth, M. & MacFarlane, D. R. Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys. Chem. Chem. Phys. 16, 18658–18674 (2014).

    Article  Google Scholar 

  45. 45.

    Ho, C. C., Evans, J. W. & Wright, P. K. Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. J. Micromech. Microeng. 20, 104009 (2010).

    Article  Google Scholar 

  46. 46.

    Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    Article  Google Scholar 

  47. 47.

    Glinka, C. et al. The 30 m small-angle neutron scattering instruments at the National Institute of Standards and Technology. J. Appl. Crystallogr. 31, 430–445 (1998).

    Article  Google Scholar 

  48. 48.

    Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 39, 895–900 (2006).

    Article  Google Scholar 

  49. 49.

    Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  Google Scholar 

  50. 50.

    Amin, E. A. & Truhlar, D. G. Zn coordination chemistry: development of benchmark suites for geometries, dipole moments, and bond dissociation energies and their use to test and validate density functionals and molecular orbital theory. J. Chem. Theor. Comput. 4, 75–85 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The principal investigators (K.X. and C.W.) gratefully acknowledge funding support from DOE ARPA-E (DEAR0000389) and the Center of Research on Extreme Batteries. We also acknowledge the support of the Maryland Nano Center and its NispLab. NispLab is supported in part by the NSF as a MRSEC Shared Experimental Facility. O.B. acknowledges Army funding DRI16-SE-019 for modelling. F.W. was supported by the Oak Ridge Associated Universities through contract W911NF-16-2-0202.

Author information

Affiliations

Authors

Contributions

F.W., K.X. and C.W. conceived the idea and co-wrote the manuscript. O.B. conducted the MD simulations and DFT calculations. A.F. and J.A.D. conducted the SANS measurements. F.W. carried out the synthesis, material characterizations, and electrochemical evaluation. T.G., X.F., W.S. and F.H. assisted with the material characterizations.

Corresponding author

Correspondence to Chunsheng Wang.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–17, Supplementary References 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Borodin, O., Gao, T. et al. Highly reversible zinc metal anode for aqueous batteries. Nature Mater 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing