Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films

Abstract

The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as −550 μC m−2 K−1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm−3, 526 W cm−3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT  1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pyroelectric and dielectric permittivity measurements of PMN–0.32PT thin films.
Fig. 2: Temperature- and field-dependent pyroelectric measurements.
Fig. 3: Implementation of solid-state pyroelectric Ericsson cycles for energy conversion.
Fig. 4: Exploring pyroelectric Ericsson cycles for energy conversion.

Similar content being viewed by others

References

  1. Estimated U.S. Energy Consumption in 2016 (Livermore Lawrence National Laboratory and Department of Energy, 2017).

  2. Ball, P. Computer engineering: Feeling the heat. Nature 492, 174–176 (2012).

    CAS  Google Scholar 

  3. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    CAS  Google Scholar 

  4. Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009).

    CAS  Google Scholar 

  5. Tritt, T. M. Recent Trends in Thermoelectric Materials, Semiconductors and Semimetals. Part Two (Academic Press, San Diego, 2000).

  6. Straub, A. P., Yip, N. Y., Lin, S., Lee, J. & Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy. 1, 16090 (2016).

    CAS  Google Scholar 

  7. Lee, S. W. et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942 (2014).

    CAS  Google Scholar 

  8. Childress, J. D. Application of a ferroelectric material in an energy conversion device. J. Appl. Phys. 33, 1793–1798 (1962).

    CAS  Google Scholar 

  9. Clingman, W. H. & Moore, R. G. Application of ferroelectricity to energy conversion processes. J. Appl. Phys. 32, 675–681 (1961).

    Google Scholar 

  10. Drummond, J. E. Dielectric power conversion. in Proc. 10th Annual Intersociety Energy Conversion and Engineering Conference, 569–575 (IEEE, New York, 1975).

  11. Olsen, R. B. Ferroelectric conversion of heat to electrical energy - a demonstration. J. Energy 6, 91–95 (1982).

    Google Scholar 

  12. McKinley, I. M., Kandilian, R. & Pilon, L. Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3–0.055PbTiO3 single crystals. Smart Mater. Struct. 21, 035015 (2012).

    Google Scholar 

  13. Navid, A. & Pilon, L. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. Smart Mater. Struct. 20, 025012 (2011).

    Google Scholar 

  14. Lee, F. Y., Jo, H. R., Lynch, C. S. & Pilon, L. Pyroelectric energy conversion using PLZT ceramics and the ferroelectric-ergodic relaxor phase transition. Smart Mater. Struct. 22, 025038 (2013).

    Google Scholar 

  15. Sebald, G., Pruvost, S. & Guyomar, D. Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Mater. Struct. 17, 015012 (2007).

    Google Scholar 

  16. Bhatia, B. et al. High power density pyroelectric energy conversion in nanometer-thick BaTiO3 films. Nanoscale Microsc. Thermophys. Eng. 20, 137–146 (2016).

    CAS  Google Scholar 

  17. Olsen, R. B., Bruno, D. A. & Briscoe, J. M. Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709–4716 (1985).

    CAS  Google Scholar 

  18. Sebald, G. et al. Electrocaloric and pyroelectric properties of 0.75Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 single crystals. J. Appl. Phys. 100, 124112 (2006).

    Google Scholar 

  19. Karthik, J. & Martin, L. W. Pyroelectric properties of polydomain epitaxial Pb(Zr1−x,Tix)O3 thin films. Phys. Rev. B 84, 024102 (2011).

    Google Scholar 

  20. Mangalam, R. V. K., Agar, J. C., Damodaran, A. R., Karthik, J. & Martin, L. W. Improved pyroelectric figures of merit in compositionally graded PbZr1−xTixO3 thin films. ACS Appl. Mater. Interfaces 5, 13235–13241 (2013).

    CAS  Google Scholar 

  21. Choi, S. W., Shrout, T. R., Jang, S. J. & Bhalla, A. S. Morphotropic phase boundary in Pb (Mg1/3Nb2/3)O3–PbTiO3 system. Mater. Lett. 8, 253–255 (1989).

    CAS  Google Scholar 

  22. Noheda, B., Cox, D. E., Shirane, G., Gao, J. & Ye, Z.-J. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66, 054104 (2002).

    Google Scholar 

  23. McLaughlin, E. A., Liu, T. & Lynch, C. S. Relaxor ferroelectric PMN–32%PT crystals under stress and electric field loading: I-32 mode measurements. Acta Mater. 52, 3849–3857 (2004).

    CAS  Google Scholar 

  24. Davis, M., Damjanovic, D. & Setter, N. Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals. Phys. Rev. B 73, 1–16 (2006).

    Google Scholar 

  25. Fu, H. & Cohen, R. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

    CAS  Google Scholar 

  26. Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).

    CAS  Google Scholar 

  27. Kim, Y. J., Choi, S. W. & Bhalla, A. S. Dielectric, pyroelectric properties, and morphotropic phase boundary in La-doped (1−x)Pb(Mg1/3Ta2/3)–xPbTiO3 solid solution ceramics. Ferroelectrics 173, 87–96 (1995).

    CAS  Google Scholar 

  28. Taylor, D. J., Damjanovic, D. & Bhalla, A. S. Pyroelectric and dielectric properties of pmn-based ceramics under dc bias. Ferroelectrics 118, 143–155 (1991).

    CAS  Google Scholar 

  29. Raevskaya, S. I. et al. Critical nature of the giant field-induced pyroelectric response in single crystals. Appl. Phys. Lett. 93, 042903 (2008).

    Google Scholar 

  30. Smirnova, E. P. & Sotnikov, A. V. Pyroelectric and elastic properties of lead magnesium niobate- and barium titanate-based solid solutions near a phase transition. Phys. Solid State 48, 102–105 (2006).

    CAS  Google Scholar 

  31. Smirnova, E. P., Aleksandrov, S. E., Sotnikov, K. A., Kapralov, A. A. & Sotnikov, A. V. Pyroelectric effect in lead-magnoniobate-based solid solutions. Phys. Solid State 45, 1305–1309 (2003).

    CAS  Google Scholar 

  32. Pandya, S. et al. Direct measurement of pyroelectric and electrocaloric effects in thin films. Phys. Rev. Appl. 7, 034025 (2017).

    Google Scholar 

  33. Maria, J.-P., Hackenberger, W. & Trolier-McKinstry, S. Phase development and electrical property analysis of pulsed laser deposited Pb(Mg1/3Nb2/3)O3–PbTiO3 (70/30) epitaxial thin films. J. Appl. Phys. 84, 5147–5154 (1998).

    CAS  Google Scholar 

  34. Colla, E. V., Yushin, N. K. & Viehland, D. Dielectric properties of (PMN)(1−x)(PT)x single crystals for various electrical and thermal histories. J. Appl. Phys. 83, 3298–3304 (1998).

    CAS  Google Scholar 

  35. Ang, C. & Yu, Z. Dc electric-field dependence of the dielectric constant in polar dielectrics: multipolarization mechanism model. Phys. Rev. B 69, 174109 (2004).

    Google Scholar 

  36. Li, Z., Xu, Z., Yao, X. & Cheng, Z. Y. Phase transition and phase stability in [110]-, [001]-, and [111]-oriented 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3 single crystal under electric field. J. Appl. Phys. 104, 024112 (2008).

    Google Scholar 

  37. Bai, F. et al. X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)–0.3PbTiO3 crystal. J. Appl. Phys. 96, 1620–1627 (2004).

    CAS  Google Scholar 

  38. Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).

    CAS  Google Scholar 

  39. Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

    CAS  Google Scholar 

  40. Olsen, R. B. & Brown, D. D. High efficiency direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics 40, 17–27 (1982).

    CAS  Google Scholar 

  41. McKinley, I. M., Lee, F. Y. & Pilon, L. A novel thermomechanical energy conversion cycle. Appl. Energy 126, 78–89 (2014).

    CAS  Google Scholar 

  42. Uršič, H. et al. Specific heat capacity and thermal conductivity of the electrocaloric (1−x)Pb(Mg1/3Nb2/3O3xPbTiO3 ceramics between room temperature and 300 °C. J. Microelectron. Electron. C 45, 260–265 (2015).

    Google Scholar 

  43. Novak, N., Cordoyiannis, G. & Kutnjak, Z. Dielectric and heat capacity study of (Pb(Mg1/3Nb2/3)O3)0.74–(PbTiO3)0.26 ferroelectric relaxor near the cubic–tetragonal–rhombohedral triple point. Ferroelectrics 428, 43–48 (2012).

    CAS  Google Scholar 

  44. Zhu, H., Pruvost, S., Guyomar, D. & Khodayari, A. Thermal energy harvesting from Pb(Zn1/3Nb2/3)0.955Ti0.045O3 single crystals phase transitions. J. Appl. Phys. 106, 124102 (2009).

    Google Scholar 

  45. Khodayari, A., Pruvost, S., Sebald, G., Guyomar, D. & Mohammadi, S. Nonlinear pyroelectric energy harvesting from relaxor single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 693–698 (2009).

    Google Scholar 

  46. Kandilian, R., Navid, A. & Pilon, L. The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary. Smart Mater. Struct. 20, 055020 (2011).

    Google Scholar 

  47. Lee, F. Y., Navid, A. & Pilon, L. Pyroelectric waste heat energy harvesting using heat conduction. Appl. Therm. Eng. 37, 30–37 (2012).

    CAS  Google Scholar 

  48. Nguyen, H., Navid, A. & Pilon, L. Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Appl. Therm. Eng. 30, 2127–2137 (2010).

    CAS  Google Scholar 

  49. Cha, G. & Ju, Y. S. Pyroelectric energy harvesting using liquid-based switchable thermal interfaces. Sens. Actuat. A 189, 100–107 (2013).

    CAS  Google Scholar 

  50. Cahill, D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802 (1990).

    CAS  Google Scholar 

Download references

Acknowledgements

S.P. acknowledges support from the Army Research Office under grant W911NF-14-1-0104. J.W. acknowledges support from a UC Berkeley Graduate Fellowship. J.K. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences through grant no. DE-SC-0012375 for development of the relaxor materials. R.G. acknowledges support from the National Science Foundation under grant OISE-1545907. A.D. acknowledges support from the National Science Foundation under grant DMR-1708615. L.W.M. acknowledges support of the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231: Materials Project programme KC23MP for development of advanced functional materials.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and L.W.M. conceived the central concepts and designed the experiments. J.K. synthesized the materials. S.P. completed the electrical studies. J.K. and R.G. completed the structural characterization of the materials. S.P. and J.W. completed the thermal characterization and implemented the energy conversion cycles. S.P. conducted additional thermal–electrical studies that contributed to the understanding of the data. J.W. and C.D. contributed to the development of both the analytical and finite-element-based heat transport models. J.W., J.K. and A.D. contributed to analysis, discussions and understanding of the data and the development of the manuscript. S.P. and L.W.M. wrote the core of the manuscript. All authors discussed the results and implications of the work and commented on the manuscript at all stages.

Corresponding author

Correspondence to Lane W. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Table 1, Supplementary References 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, S., Wilbur, J., Kim, J. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nature Mater 17, 432–438 (2018). https://doi.org/10.1038/s41563-018-0059-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0059-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing