Letter | Published:

Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents

Nature Materialsvolume 17pages499503 (2018) | Download Citation

Abstract

Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin–orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

  2. 2.

    Eschrig, M. Spin-polarized supercurrents for spintronics: a review of current progress. Rep. Prog. Phys. 78, 104501 (2015).

  3. 3.

    Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

  4. 4.

    Ando, K. et al. Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109, 103913 (2011).

  5. 5.

    Bell, C., Milikisyants, S., Huber, M. & Aarts, J. Spin dynamics in a superconductor–ferromagnet proximity system. Phys. Rev. Lett. 100, 047002 (2008).

  6. 6.

    Morten, J. P., Brataas, A., Bauer, G. E. W., Belzig, W. & Tserkovnyak, Y. Proximity-effect-assisted decay of spin currents in superconductors. Europhys. Lett. 84, 57008 (2008).

  7. 7.

    Beckmann, D. Spin manipulation in nanoscale superconductors. J. Phys. Condens. Matter 28, 163001 (2016).

  8. 8.

    Hübler, F., Wolf, M. J., Beckmann, D. & Löhneysen, H. v. Long-range spin-polarized quasiparticle transport in mesoscopic Al superconductors with a Zeeman splitting. Phys. Rev. Lett. 109, 207001 (2012).

  9. 9.

    Quay, C. H. L., Chevallier, D., Bena, C. & Aprili, M. Spin imbalance and spin-charge separation in a mesoscopic superconductor. Nat. Phys. 9, 84–88 (2013).

  10. 10.

    Wakamura, T., Hasegawa, N., Ohnishi, K., Niimi, Y. & Otani, Y. Spin injection into a superconductor with strong spin–orbit coupling. Phys. Rev. Lett. 112, 036602 (2014).

  11. 11.

    Yang, H., Yang, S.-H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9, 586–593 (2010).

  12. 12.

    Poli, N. et al. Spin injection and relaxation in a mesoscopic superconductor. Phys. Rev. Lett. 100, 136601 (2008).

  13. 13.

    Wakamura, T. et al. Quasiparticle-mediated spin Hall effect in a superconductor. Nat. Mater. 14, 675–678 (2015).

  14. 14.

    Inoue, M., Ichioka, M. & Adachi, H. Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film. Phys. Rev. B 96, 024414 (2017).

  15. 15.

    Rojas-Sanchez, J. C. et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).

  16. 16.

    Gu, J. Y., Caballero, J. A., Slater, R. D., Loloee, R. & Pratt, W. P. Direct measurement of quasiparticle evanescent waves in a dirty superconductor. Phys. Rev. B 66, 140507 (2002).

  17. 17.

    Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnet–normal metal systems. Phys. Rev. Lett. 84, 2481–2484 (2000).

  18. 18.

    Zhang, W., Han, W., Jiang, X., Yang, S.-H. & Parkin, S. S. P. Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nat. Phys. 11, 496–502 (2015).

  19. 19.

    Villamor, E., Isasa, M., Hueso, L. E. & Casanova, F. Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves. Phys. Rev. B 88, 184411 (2013).

  20. 20.

    Flokstra, M. G. et al. Remotely induced magnetism in a normal metal using a superconducting spin-valve. Nat. Phys. 12, 57–61 (2016).

  21. 21.

    Ruggiero, S. T., Track, E. K., Prober, D. E., Arnold, G. B. & DeWeert, M. J. Electron tunneling in tantalum surface layers on niobium. Phys. Rev. B 34, 217–225 (1986).

  22. 22.

    Bell, C. et al. Proximity and Josephson effects in superconductor/antiferromagnetic Nb/gamma-Fe50Mn5 0 heterostructures. Phys. Rev. B 69, 109903 (2003).

  23. 23.

    Grein, R., Löfwander, T. & Eschrig, M. Inverse proximity effect and influence of disorder on triplet supercurrents in strongly spin-polarized ferromagnets. Phys. Rev. B 88, 054502 (2013).

  24. 24.

    Kalcheim, Y., Millo, O., Di Bernardo, A., Pal, A. & Robinson, J. W. A. Inverse proximity effect at superconductor-ferromagnet interfaces: Evidence for induced triplet pairing in the superconductor. Phys. Rev. B 92, 060501(R) (2015).

  25. 25.

    Di Bernardo, A. et al. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces. Nat. Commun. 6, 8053 (2015).

  26. 26.

    Bergeret, F. S. & Tokatly, I. V. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor–ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).

  27. 27.

    Jacobsen, S. H., Kulagina, I. & Linder, J. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet. Sci. Rep. 6, 23926 (2016).

  28. 28.

    Houzet, M. Ferromagnetic Josephson junction with precessing magnetization. Phys. Rev. Lett. 101, 057009 (2008).

  29. 29.

    Holmqvist, C., Teber, S. & Fogelström, M. Nonequilibrium effects in a Josephson junction coupled to a precessing spin. Phys. Rev. B 83, 104521 (2011).

  30. 30.

    König, R., Schindler, A. & Herrmannsdörfer, T. Superconductivity of compacted platinum powder at very low temperatures. Phys. Rev. Lett. 82, 4528–4531 (1999).

  31. 31.

    Tanaka, T. et al. Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals. Phys. Rev. B 77, 165117 (2008).

  32. 32.

    Gubin, A. I., Il’in, K. S., Vitusevich, S. A., Siegel, M. & Klein, N. Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B 72, 064503 (2005).

Download references

Acknowledgements

This work was supported by EPSRC Programme Grant EP/N017242/1.

Author information

Affiliations

  1. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK

    • Kun-Rok Jeon
    • , Jason W. A. Robinson
    •  & Mark G. Blamire
  2. Cavendish Laboratory, University of Cambridge, Cambridge, UK

    • Kun-Rok Jeon
    • , Chiara Ciccarelli
    •  & Andrew J. Ferguson
  3. London Centre for Nanotechnology and Department of Electronic and Electrical Engineering at University of College London, London, UK

    • Hidekazu Kurebayashi
  4. The Blackett Laboratory, Imperial College London, London, UK

    • Lesley F. Cohen
  5. Department of Physics, Royal Holloway, University of London, Egham, UK

    • Xavier Montiel
    •  & Matthias Eschrig

Authors

  1. Search for Kun-Rok Jeon in:

  2. Search for Chiara Ciccarelli in:

  3. Search for Andrew J. Ferguson in:

  4. Search for Hidekazu Kurebayashi in:

  5. Search for Lesley F. Cohen in:

  6. Search for Xavier Montiel in:

  7. Search for Matthias Eschrig in:

  8. Search for Jason W. A. Robinson in:

  9. Search for Mark G. Blamire in:

Contributions

K.-R.J. and M.G.B. conceived and designed the experiments; the samples were prepared by K.-R.J., with help and the sputtering system provided by J.W.A.R. and M.G.B.; the FMR measurements were carried out by K.-R.J. with the help of C.C., H.K. and A.J.F.; the model calculation was performed by X.M. and M.E. and the data analysis was carried out by K.-R.J., C.C., H.K., J.W.A.R. and M.G.B.; all authors discussed the results and commented on the manuscript, which was written by K.-R.J. and M.G.B.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Chiara Ciccarelli or Mark G. Blamire.

Supplementary information

  1. Supplementary Information

    Supplementary text, Supplementary Figures 1–12, Supplementary references

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0058-9