Room-temperature ductile inorganic semiconductor

  • Nature Materialsvolume 17pages421426 (2018)
  • doi:10.1038/s41563-018-0047-z
  • Download Citation
Published online:


Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver–silver and sulfur–silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

  • Subscribe to Nature Materials for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

  2. 2.

    Zhu, L. et al. Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater. 59, 5544–5557 (2011).

  3. 3.

    Schiøtz, J., Di Tolla, F. D. & Jacobsen, K. W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

  4. 4.

    Taylor, G. I. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 145, 362–387 (1934).

  5. 5.

    Green, D. J. An Introduction to the Mechanical Properties of Ceramics (Cambridge Univ. Press, Cambridge, UK, 1998).

  6. 6.

    Smithells, C. J. Smithells Metals Reference Book 7th edn (Butterworth-Heinemann, Boston, MA, USA, 1992).

  7. 7.

    Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer, New York, USA, 2010).

  8. 8.

    Barret, C. S. & Massalski, T. B. Structure of Metals (Pergamon, Oxford, UK, 1992).

  9. 9.

    Neamen, D. A. Semiconductor Physics and Devices: Basic Principles 3rd edn (McGraw-Hill, New York, USA, 2003).

  10. 10.

    Baca, A. J. et al. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008).

  11. 11.

    Karch, J., Birringer, R. & Gleiter, H. Ceramics ductile at low temperature. Nature 330, 556–558 (1987).

  12. 12.

    Sadanaga, R. & Sueno, S. X-ray study on the α-β transition of Ag2S. Mineral. Mag. 5, 124–143 (1967).

  13. 13.

    Thaddeus, B. M. in Binary Alloy Phase Diagrams 2nd edn 2705–2708 (Materials Park, Ohio, USA, 1990).

  14. 14.

    Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

  15. 15.

    Junod, P., Hediger, H., Kilchör, B. & Wullschleger, J. Metal–non-metal transition in silver chalcogenides. Philos. Mag. 36, 941–958 (1977).

  16. 16.

    Lankford, J., Page, R. A. & Rabenberg, L. Deformation mechanisms in yttria-stabilized zirconia. J. Mater. Sci. 23, 4144–4156 (1988).

  17. 17.

    Barsoum, M. W. & Raghy, T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996).

  18. 18.

    Sun, Z., Zhang, Z., Hashimoto, H. & Abe, T. Ternary compound Ti3SiC2: Part II. Deformation and fracture behavior at different temperatures. Mater. Trans. 43, 432–435 (2002).

  19. 19.

    Shin, S. S., Kim, S. H. & Lee, J. C. Be-free Cu alloy exhibiting ultra-high strength and moderate tensile ductility. Mater. Sci. Eng. 639, 181–186 (2015).

  20. 20.

    Rice, J. R. & Thomson, R. Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73–97 (1974).

  21. 21.

    Bartels, T. et al. Lubricants and Lubrication. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, Germany, 2005).

  22. 22.

    Itakura, M. et al. Atomistic study on the cross-slip process of a screw <a> dislocation in magnesium. Model. Simul. Mater. Sci. Eng. 23, 065002 (2015).

  23. 23.

    Clouet, E., Caillard, D., Chaari, N., Onimus, F. & Rodney, D. Dislocation locking versus easy glide in titanium and zirconium. Nat. Mater. 14, 931–936 (2015).

  24. 24.

    Grin, Yu, Savin, A. & Silvi, B. in The Chemical Bond: Chemical Bonding Across the Periodic Table 18, 345–382 (Wiley, Weinheim, Germany, 2014).

  25. 25.

    Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

  26. 26.

    Lovato, M. L. & Stout, M. G. Compression testing techniques to determine the stress/strain behavior of metals subject to finite deformation. Metall. Trans. 23, 935–951 (1992).

  27. 27.

    Schwaiger, R., Moser, B., Dao, M., Chollacoop, N. & Suresh, S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159–5172 (2003).

  28. 28.

    Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

  29. 29.

    Kovács, I. & Vörös, G. Tensile stress–strain curves of polycrystalline silver. Phys. Status Solidi A 142, 59–67 (1994).

  30. 30.

    Shabanova, I. N. & Trapeznikov, V. A. A study of the electronic structure of Fe3C, Fe3Al and Fe3Si by x-ray photoelectron spectroscopy. J. Electron Spectrosc. 6, 297–307 (1975).

  31. 31.

    Gnanamoorthy, R., Mutoh, Y. & Mizuhara, Y. Flexural strength of gamma base titanium aluminides at room and elevated temperatures. Mater. Sci. Eng. 197, 69–77 (1995).

  32. 32.

    Akselrud, L. & Grin, Y. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803–805 (2014).

  33. 33.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

  34. 34.

    Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

  35. 35.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

  36. 36.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

  37. 37.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

  38. 38.

    Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

  39. 39.

    Jepsen, O., Burkhardt, A. & Andersen, O. K. The Program TB-LMTO-ASA, 4.7 (Max-Planck-Institut für Festkörperforschung, 1999).

  40. 40.

    von Barth, U. & Hedin, L. A. Local exchange-correlation potential for the spin polarized case. J. Phys. C 5, 1629 (1972).

  41. 41.

    Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).

  42. 42.

    Lambrecht, W. R. & Andersen, O. K. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 34, 2439 (1986).

  43. 43.

    Kohout, M. A measure of electron localizability. Int. J. Quantum Chem. 97, 651–658 (2004).

  44. 44.

    Wagner, F. R., Bezugly, V., Kohout, M. & Grin, Y. Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. Chem. Eur. J. 13, 5724–5741 (2007).

  45. 45.

    Kohout, M. Bonding indicators from electron pair density functionals. Faraday Discuss. 135, 43–54 (2007).

  46. 46.

    Kohout, M. Program DGrid, version 4.7 (2015).

  47. 47.

    Bader, R. F. W. Atoms in Molecules - A Quantum Theory (Clarendon, Oxford, UK, 1995).

Download references


We thank K.Lu at the Institute of Metal Research for helpful discussions. This work is supported by the National Natural Science Foundation of China (NSFC) under grant numbers 51625205 and 51632010, the Key Research Program of the Chinese Academy of Sciences (grant number KFZD-SW-421) and the Shanghai Government (grant number 15JC1400301 and 16XD1403900).

Author information


  1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China

    • Xun Shi
    • , Hongyi Chen
    • , Feng Hao
    • , Ruiheng Liu
    • , Tuo Wang
    • , Pengfei Qiu
    •  & Lidong Chen
  2. Shanghai Tech University, Shanghai, China

    • Hongyi Chen
  3. University of Chinese Academy of Sciences, Beijing, China

    • Feng Hao
    •  & Tuo Wang
  4. Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany

    • Ulrich Burkhardt
    •  & Yuri Grin


  1. Search for Xun Shi in:

  2. Search for Hongyi Chen in:

  3. Search for Feng Hao in:

  4. Search for Ruiheng Liu in:

  5. Search for Tuo Wang in:

  6. Search for Pengfei Qiu in:

  7. Search for Ulrich Burkhardt in:

  8. Search for Yuri Grin in:

  9. Search for Lidong Chen in:


F.H., R.L., T.W. and X.S. prepared the samples and measured the physical properties. H.C. performed ab initio calculations. U.B. performed microstructure experiments. Y.G. performed evaluation of X-ray diffraction measurements, structure refinements and quantum chemical calculations. X.S., H.C., R.L., Y.G. P.Q and L.C. wrote and edited the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Xun Shi or Yuri Grin or Lidong Chen.

Supplementary information

  1. Supplementary Information

    Supplementary Tables: S1–S2, Supplementary Figures: Figures S1–S13