Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature ductile inorganic semiconductor

An Author Correction to this article was published on 30 May 2018

This article has been updated

Abstract

Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver–silver and sulfur–silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inorganic semiconductor α-Ag2S and its mechanical properties.
Fig. 2: Room-temperature mechanical properties of the semiconductor α-Ag2S.
Fig. 3: Ductility of α-Ag2S.
Fig. 4: Bonding features and slipping in α-Ag2S.

Similar content being viewed by others

Change history

  • 30 May 2018

    In the version of this Article originally published, the x-axis numbers of Fig. 3d were incorrect; the range should have been 0 to 12 instead of 1 to 13. This has now been corrected.

References

  1. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    Article  CAS  Google Scholar 

  2. Zhu, L. et al. Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater. 59, 5544–5557 (2011).

    Article  CAS  Google Scholar 

  3. Schiøtz, J., Di Tolla, F. D. & Jacobsen, K. W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  4. Taylor, G. I. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 145, 362–387 (1934).

    Article  CAS  Google Scholar 

  5. Green, D. J. An Introduction to the Mechanical Properties of Ceramics (Cambridge Univ. Press, Cambridge, UK, 1998).

  6. Smithells, C. J. Smithells Metals Reference Book 7th edn (Butterworth-Heinemann, Boston, MA, USA, 1992).

  7. Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer, New York, USA, 2010).

  8. Barret, C. S. & Massalski, T. B. Structure of Metals (Pergamon, Oxford, UK, 1992).

  9. Neamen, D. A. Semiconductor Physics and Devices: Basic Principles 3rd edn (McGraw-Hill, New York, USA, 2003).

  10. Baca, A. J. et al. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47, 5524–5542 (2008).

    Article  CAS  Google Scholar 

  11. Karch, J., Birringer, R. & Gleiter, H. Ceramics ductile at low temperature. Nature 330, 556–558 (1987).

    Article  CAS  Google Scholar 

  12. Sadanaga, R. & Sueno, S. X-ray study on the α-β transition of Ag2S. Mineral. Mag. 5, 124–143 (1967).

    Article  CAS  Google Scholar 

  13. Thaddeus, B. M. in Binary Alloy Phase Diagrams 2nd edn 2705–2708 (Materials Park, Ohio, USA, 1990).

  14. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    Article  CAS  Google Scholar 

  15. Junod, P., Hediger, H., Kilchör, B. & Wullschleger, J. Metal–non-metal transition in silver chalcogenides. Philos. Mag. 36, 941–958 (1977).

    Article  CAS  Google Scholar 

  16. Lankford, J., Page, R. A. & Rabenberg, L. Deformation mechanisms in yttria-stabilized zirconia. J. Mater. Sci. 23, 4144–4156 (1988).

    Article  CAS  Google Scholar 

  17. Barsoum, M. W. & Raghy, T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996).

    Article  CAS  Google Scholar 

  18. Sun, Z., Zhang, Z., Hashimoto, H. & Abe, T. Ternary compound Ti3SiC2: Part II. Deformation and fracture behavior at different temperatures. Mater. Trans. 43, 432–435 (2002).

    Article  CAS  Google Scholar 

  19. Shin, S. S., Kim, S. H. & Lee, J. C. Be-free Cu alloy exhibiting ultra-high strength and moderate tensile ductility. Mater. Sci. Eng. 639, 181–186 (2015).

    Article  CAS  Google Scholar 

  20. Rice, J. R. & Thomson, R. Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73–97 (1974).

    Article  CAS  Google Scholar 

  21. Bartels, T. et al. Lubricants and Lubrication. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, Germany, 2005).

  22. Itakura, M. et al. Atomistic study on the cross-slip process of a screw <a> dislocation in magnesium. Model. Simul. Mater. Sci. Eng. 23, 065002 (2015).

    Article  Google Scholar 

  23. Clouet, E., Caillard, D., Chaari, N., Onimus, F. & Rodney, D. Dislocation locking versus easy glide in titanium and zirconium. Nat. Mater. 14, 931–936 (2015).

    Article  CAS  Google Scholar 

  24. Grin, Yu, Savin, A. & Silvi, B. in The Chemical Bond: Chemical Bonding Across the Periodic Table 18, 345–382 (Wiley, Weinheim, Germany, 2014).

  25. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  26. Lovato, M. L. & Stout, M. G. Compression testing techniques to determine the stress/strain behavior of metals subject to finite deformation. Metall. Trans. 23, 935–951 (1992).

    Article  Google Scholar 

  27. Schwaiger, R., Moser, B., Dao, M., Chollacoop, N. & Suresh, S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159–5172 (2003).

    Article  CAS  Google Scholar 

  28. Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    Article  CAS  Google Scholar 

  29. Kovács, I. & Vörös, G. Tensile stress–strain curves of polycrystalline silver. Phys. Status Solidi A 142, 59–67 (1994).

    Article  Google Scholar 

  30. Shabanova, I. N. & Trapeznikov, V. A. A study of the electronic structure of Fe3C, Fe3Al and Fe3Si by x-ray photoelectron spectroscopy. J. Electron Spectrosc. 6, 297–307 (1975).

    Article  CAS  Google Scholar 

  31. Gnanamoorthy, R., Mutoh, Y. & Mizuhara, Y. Flexural strength of gamma base titanium aluminides at room and elevated temperatures. Mater. Sci. Eng. 197, 69–77 (1995).

    Article  Google Scholar 

  32. Akselrud, L. & Grin, Y. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803–805 (2014).

    Article  CAS  Google Scholar 

  33. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  34. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  37. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  38. Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).

    Article  CAS  Google Scholar 

  39. Jepsen, O., Burkhardt, A. & Andersen, O. K. The Program TB-LMTO-ASA, 4.7 (Max-Planck-Institut für Festkörperforschung, 1999).

  40. von Barth, U. & Hedin, L. A. Local exchange-correlation potential for the spin polarized case. J. Phys. C 5, 1629 (1972).

    Article  CAS  Google Scholar 

  41. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060 (1975).

    Article  CAS  Google Scholar 

  42. Lambrecht, W. R. & Andersen, O. K. Minimal basis sets in the linear muffin-tin orbital method: Application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B 34, 2439 (1986).

    Article  CAS  Google Scholar 

  43. Kohout, M. A measure of electron localizability. Int. J. Quantum Chem. 97, 651–658 (2004).

    Article  CAS  Google Scholar 

  44. Wagner, F. R., Bezugly, V., Kohout, M. & Grin, Y. Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. Chem. Eur. J. 13, 5724–5741 (2007).

    Article  CAS  Google Scholar 

  45. Kohout, M. Bonding indicators from electron pair density functionals. Faraday Discuss. 135, 43–54 (2007).

    Article  CAS  Google Scholar 

  46. Kohout, M. Program DGrid, version 4.7 (2015).

  47. Bader, R. F. W. Atoms in Molecules - A Quantum Theory (Clarendon, Oxford, UK, 1995).

Download references

Acknowledgements

We thank K.Lu at the Institute of Metal Research for helpful discussions. This work is supported by the National Natural Science Foundation of China (NSFC) under grant numbers 51625205 and 51632010, the Key Research Program of the Chinese Academy of Sciences (grant number KFZD-SW-421) and the Shanghai Government (grant number 15JC1400301 and 16XD1403900).

Author information

Authors and Affiliations

Authors

Contributions

F.H., R.L., T.W. and X.S. prepared the samples and measured the physical properties. H.C. performed ab initio calculations. U.B. performed microstructure experiments. Y.G. performed evaluation of X-ray diffraction measurements, structure refinements and quantum chemical calculations. X.S., H.C., R.L., Y.G. P.Q and L.C. wrote and edited the manuscript.

Corresponding authors

Correspondence to Xun Shi, Yuri Grin or Lidong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables: S1–S2, Supplementary Figures: Figures S1–S13

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Chen, H., Hao, F. et al. Room-temperature ductile inorganic semiconductor. Nature Mater 17, 421–426 (2018). https://doi.org/10.1038/s41563-018-0047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0047-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing