Abstract
The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).
Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).
Regal, C. & Jin, D. Experimental realization of the BCS-BEC crossover with a Fermi gas of atoms. Adv. At. Mol. Opt. Phys. 54, 1–79 (2007).
Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).
Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).
Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ. Nature 398, 221–223 (1999).
Johnston, S. et al. Material and doping dependence of the nodal and antinodal dispersion renormalizations in single- and multilayer cuprates. Adv. Condens. Matter Phys. 2010, 968304 (2010).
Kordyuk, V. et al. An ARPES view on the high-T c problem: phonons vs. spin-fluctuations. Eur. Phys. J. Spec. Top. 188, 153–162 (2010).
Benfatto, L., Caprara, S., Castellani, C., Paramekanti, A. & Randeria, M. Phase fluctuations, dissipation, and superfluid stiffness in d-wave superconductors. Phys. Rev. B 63, 174513 (2001).
Wang, Y. et al. Onset of the vortexlike Nernst signal above T c in La2–xSrxCuO4 and Bi2Sr2–yLayCuO6. Phys. Rev. B 64, 224519 (2001).
Li, L. et al. Diamagnetism and Cooper pairing above T c in cuprates. Phys. Rev. B 81, 054510 (2010).
Kondo, T. et al. Point nodes persisting far beyond T c in Bi2212. Nat. Commun. 6, 7699 (2015).
Reber, T. J. et al. The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ. Nat. Phys. 8, 606–610 (2012).
Madan, I. et al. Separating pairing from quantum phase coherence dynamics above the superconducting transition by femtosecond spectroscopy. Sci. Rep. 4, 5656 (2014).
Perfetti, L. et al. Ultrafast dynamics of fluctuations in high-temperature superconductors far from equilibrium. Phys. Rev. Lett. 114, 067003 (2015).
Gomes, K. K. et al. Mapping of the formation of the pairing gap in Bi2Sr2CaCu2O8+δ. J. Phys. Chem. Solids 69, 3034–3038 (2008).
Ding, H. et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x. Phys. Rev. B 54, R9678–R9681 (1996).
Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-T c superconductors. Phys. Rev. B 57, R11093–R11096 (1998).
Franz, M. & Millis, A. J. Phase fluctuations and spectral properties of underdoped cuprates. Phys. Rev. B 58, 14572–14580 (1998).
Kwon, H.-J. & Dorsey, A. T. Effect of phase fluctuations on the single-particle properties of underdoped cuprates. Phys. Rev. B 59, 6438–6448 (1999).
Smallwood, C. L. et al. Tracking cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission. Science 336, 1137–1139 (2012).
Zhang, W. et al. Signatures of superconductivity and pseudogap formation in nonequilibrium nodal quasiparticles revealed by ultrafast angle-resolved photoemission. Phys. Rev. B 88, 245132 (2013).
Smallwood, C. L. et al. Time- and momentum-resolved gap dynamics in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 89, 115126 (2014).
Kusar, P. et al. Controlled vaporization of the superconducting condensate in cuprate superconductors by femtosecond photoexcitation. Phys. Rev. Lett. 101, 227001 (2008).
Giannetti, C. et al. Discontinuity of the ultrafast electronic response of underdoped superconducting Bi2Sr2CaCu2O8+δ strongly excited by ultrashort light pulses. Phys. Rev. B 79, 224502 (2009).
Giannetti, C. et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys. 65, 58–238 (2016).
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
Sentef, M. et al. Examining electron-boson coupling using time-resolved spectroscopy. Phys. Rev. X 3, 041033 (2013).
Kemper, A. F., Sentef, M. A., Moritz, B., Devereaux, T. P. & Freericks, J. K. Review of the theoretical description of time-resolved angle-resolved photoemission spectroscopy in electron–phonon mediated superconductors. Ann. Phys. 529, 1600235 (2017).
Ishida, Y. et al. Quasi-particles ultra-fastly releasing kink bosons to form Fermi arcs in a cuprate superconductor. Sci. Rep. 6, 18747 (2016).
Zhang, W. et al. Stimulated emission of Cooper pairs in a high-temperature cuprate superconductor. Sci. Rep. 6, 29100 (2016).
Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-T c superconductors. Nature 392, 157–160 (1998).
Parham, S. et al. Ultrafast gap dynamics and electronic interactions in a photoexcited cuprate superconductor. Phys. Rev. X 7, 041013 (2017).
Matsui, H. et al. BCS-like Bogoliubov quasiparticles in high-T c superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003).
Yang, H.-B. et al. Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ. Nature 456, 77–80 (2008).
Hashimoto, M., Vishik, I. M., He, R.-H., Devereaux, T. P. & Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 10, 483–495 (2014).
Graf, J. et al. Nodal quasiparticle meltdown in ultrahigh-resolution pump-probe angle-resolved photoemission. Nat. Phys. 7, 805–809 (2011).
Hanaguri, T. et al. Coherence factors in a high-T c cuprate probed by quasi-particle scattering off vortices. Science 323, 923–926 (2009).
Hinton, J. P. et al. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors. Sci. Rep. 6, 23610 (2016).
Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ. Science 289, 277–281 (2000).
Ding, H. et al. Coherent quasiparticle weight and its connection to high-T c superconductivity from angle-resolved photoemission. Phys. Rev. Lett. 87, 227001 (2001).
Dal Conte, S. et al. Snapshots of the retarded interaction of charge carriers with ultrafast fluctuations in cuprates. Nat. Phys. 11, 421–426 (2015).
Perfetti, L. et al. Ultrafast electron relaxation in superconducting Bi2Sr2CaCu2O8+δ by time-resolved photoelectron spectroscopy. Phys. Rev. Lett. 99, 197001 (2007).
Rameau, J. D. et al. Energy dissipation from a correlated system driven out of equilibrium. Nat. Commun. 7, 13761 (2016).
Averitt, R. D. et al. Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7–δ. Phys. Rev. B 63, 140502 (2001).
Kaindl, R. A., Carnahan, M. A., Chemla, D. S., Oh, S. & Eckstein, J. N. Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 72, 060510 (2005).
Zhang, Z. et al. Photoinduced filling of near-nodal gap in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 96, 064510 (2017).
Chubukov, A. V., Norman, M. R., Millis, A. J. & Abrahams, E. Gapless pairing and the Fermi arc in the cuprates. Phys. Rev. B 76, 180501 (2007).
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, UK, 2000).
Baldini, E. et al. Clocking the onset of bilayer coherence in a high-T c cuprate. Phys. Rev. B 95, 024501 (2017).
Acknowledgements
We thank L. Benfatto, A. Chubukov and M. Franz for useful and fruitful discussions. C.G. acknowledges financial support from MIUR through the PRIN 2015 Programme (Prot. 2015C5SEJJ001) and from Università Cattolica del Sacro Cuore through D.1, D.2.2 and D.3.1 grants. This research was undertaken thanks in part to funding from the Max Planck-UBC-UTokyo Centre for Quantum Materials and the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The work at UBC was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative, grant GBMF4779, the Killam, Alfred P. Sloan and Natural Sciences and Engineering Research Council of Canada's (NSERCs) Steacie Memorial Fellowships (A.D.), the Alexander von Humboldt Fellowship (A.D.), the Canada Research Chairs Program (A.D.), NSERC, Canada Foundation for Innovation (CFI), CIFAR Quantum Materials and CIFAR Global Scholars (E.H.d.S.N.). E.R. acknowledges support from the Swiss National Science Foundation (SNSF) grant no. P300P2-164649. G.D.G. is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under contract no. DE-AC02-98CH10886. J.S. and R.D.Z. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science.
Author information
Authors and Affiliations
Contributions
F.B., E.H.d.S.N., D.J.J., C.G. and A.D. conceived the investigation. F.B. performed TR-ARPES measurements with the assistance of E.H.d.S.N., E.R. and M.Z., and F.B., E.H.d.S.N., E.R., M.Z., S.P., R.P.D., M.M., M.S., B.Z., P.N., S.Z., A.K.M. and G.L. were responsible for operation and maintenance of the experimental system. F.B., E.H.d.S.N., E.R., C.G. and A.D. were responsible for data analysis and interpretation. R.D.Z., J.S. and G.D.G. provided Bi2212 samples. All of the authors discussed the underlying physics and contributed to the manuscript. F.B., E.H.d.S.N., R.P.D., C.G. and A.D. wrote the manuscript. A.D. was responsible for the overall direction, planning and management of the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Information, 6 figures, 7 references
Rights and permissions
About this article
Cite this article
Boschini, F., da Silva Neto, E.H., Razzoli, E. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nature Mater 17, 416–420 (2018). https://doi.org/10.1038/s41563-018-0045-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-018-0045-1
This article is cited by
-
A hybrid quantum-classical method for electron-phonon systems
Communications Physics (2023)
-
Optical manipulation of Rashba-split 2-dimensional electron gas
Nature Communications (2022)
-
Terahertz spectroscopy of high temperature superconductors and their photonic applications
Journal of the Korean Physical Society (2022)
-
High-resolution time- and angle-resolved photoemission studies on quantum materials
Quantum Frontiers (2022)
-
Extreme-ultraviolet frequency combs for precision metrology and attosecond science
Nature Photonics (2021)