Electric-field switching of two-dimensional van der Waals magnets

Abstract

Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2,3,4, FM semiconductors5, multiferroics6,7,8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Crystal structure and magnetic phase diagram of bilayer CrI3.
Fig. 2: Linear ME effect in AFM bilayer CrI3.
Fig. 3: ME response of bilayer (2L) and monolayer (1L) CrI3.
Fig. 4: Electrical switching of the magnetic order in bilayer CrI3.

References

  1. 1.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet–multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

    Article  Google Scholar 

  10. 10.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, 1603113 (2017).

    Article  Google Scholar 

  15. 15.

    McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Article  Google Scholar 

  16. 16.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Dillon, J. F. & Olson, C. E. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J. Appl. Phys. 36, 1259–1260 (1965).

    CAS  Article  Google Scholar 

  18. 18.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article  Google Scholar 

  19. 19.

    Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (Pergamon: New York, NY, 1975).

    Google Scholar 

  20. 20.

    Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Article  Google Scholar 

  21. 21.

    Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotech. 12, 144–149 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Jacobs, I. S. & Lawrence, P. E. Metamagnetic phase transitions and hysteresis in FeCl2. Phys. Rev. 164, 866–878 (1967).

    CAS  Article  Google Scholar 

  26. 26.

    Rivera, J.-P. A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71, 299–313 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    Weiglhofer, W. S. & Lakhtakia, A, (eds) Introduction to Complex Mediums for Optics and Electromagnetics. 175 (SPIE: Bellingham, 2003).

  28. 28.

    O’Dell, T. H. The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970).

    Google Scholar 

  29. 29.

    Rado, G. T. Mechanism of the magnetoelectric effect in an antiferromagnet. Phys. Rev. Lett. 6, 609–610 (1961).

    CAS  Article  Google Scholar 

  30. 30.

    Rado, G. T. Magnetoelectric evidence for the attainability of time-reversed antiferromagnetic configurations by metamagnetic transitions in DyPO4. Phys. Rev. Lett. 23, 644–647 (1969).

    CAS  Article  Google Scholar 

  31. 31.

    Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  32. 32.

    Miyake, A., Sato, Y., Tokunaga, M., Jatmika, J. & Ebihara, T. Different metamagnetism between paramagnetic Ce and Yb isomorphs. Phys. Rev. B 96, 085127 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported the Air Force Office of Scientific Research under grant FA9550-16-1-0249 and the Army Research Office under grant W911NF-17-1-0605 for sample and device fabrication, and the Air Force Office of Scientific Research under grant FA9550- 14-1-0268 for optical spectroscopy measurements. Support for data analysis and modelling was provided by the National Science Foundation DMR-1410407 (J.S.), and a David and Lucille Packard Fellowship and a Sloan Fellowship (K.F.M.).

Author information

Affiliations

Authors

Contributions

All the authors conceived and designed the experiments, analysed the data and co-wrote the manuscript. S.J. fabricated the devices and performed the measurements.

Corresponding authors

Correspondence to Jie Shan or Kin Fai Mak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

13 Sections, 14 Figures, 19 references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Shan, J. & Mak, K.F. Electric-field switching of two-dimensional van der Waals magnets. Nature Mater 17, 406–410 (2018). https://doi.org/10.1038/s41563-018-0040-6

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing