Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2


Monolayers (MLs) of transition-metal dichalcogenides (TMDs) exhibit unusual electrical behaviour under magnetic fields due to their intrinsic spin–orbit coupling and lack of inversion symmetry1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. Although recent experiments have also identified the critical role of carrier interactions within these materials11,15, a complete mapping of the ambipolar Landau level (LL) sequence has remained elusive. Here we use single-electron transistors (SETs)16,17 to perform LL spectroscopy in ML WSe2, and provide a comprehensive picture of the electronic structure of a ML TMD for both electrons and holes. We find that the LLs differ notably between the two bands, and follow a unique sequence in the valence band (VB) that is dominated by strong Zeeman effects. The Zeeman splitting in the VB is several times higher than the cyclotron energy, far exceeding the predictions of a single-particle model and, moreover, tunes significantly with doping15. This implies exceptionally strong many-body interactions, and suggests that ML WSe2 can serve as a host for new correlated-electron phenomena.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: ML WSe2 in the quantum Hall regime.
Fig. 2: Probing scheme and ambipolar LL dispersion.
Fig. 3: Isospin polarization of LLs.
Fig. 4: Density-dependent LL energy gaps in the VB.
Fig. 5: Extracted parameters and effects of interactions.


  1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  2. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  3. Li, X., Zhang, F. & Niu, Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: application to an isolated MoS2 trilayer. Phys. Rev. Lett. 110, 066803 (2013).

    Article  Google Scholar 

  4. Rose, F., Goerbig, M. O. & Piéchon, F. Spin- and valley-dependent magneto-optical properties of MoS2. Phys. Rev. B 88, 125438 (2013).

    Article  Google Scholar 

  5. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Article  Google Scholar 

  6. Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 113, 266804 (2014).

    Article  Google Scholar 

  7. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

    Article  Google Scholar 

  8. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

    CAS  Article  Google Scholar 

  9. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    CAS  Article  Google Scholar 

  10. Stier, A. V., McCreary, K. M., Jonker, B. T., Kono, J. & Crooker, S. A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat. Commun. 7, 10643 (2016).

    CAS  Article  Google Scholar 

  11. Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotech. 12, 144–149 (2017).

    CAS  Article  Google Scholar 

  12. Wang, Z., Mak, K. F. & Shan, J. Strongly interaction-enhanced valley magnetic response in monolayer WSe2. Phys. Rev. Lett. 120, 066402 (2018).

    CAS  Article  Google Scholar 

  13. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

    CAS  Article  Google Scholar 

  14. Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article  Google Scholar 

  15. Movva, H. C. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Article  Google Scholar 

  16. Wei, Y. Y., Weis, J., von Klitzing, K. & Eberl, K. Single-electron transistor as an electrometer measuring chemical potential variations. Appl. Phys. Lett. 71, 2514–2516 (1997).

    CAS  Article  Google Scholar 

  17. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008).

    CAS  Article  Google Scholar 

  18. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    CAS  Article  Google Scholar 

  19. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  20. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).

    CAS  Article  Google Scholar 

  21. Kośmider, K., González, J. W. & Fernández-Rossier, J. Large spin splitting in the conduction band of transition metal dichalcogenide monolayers. Phys. Rev. B 88, 245436 (2013).

    Article  Google Scholar 

  22. Feldman, B. E., Krauss, B., Smet, J. H. J. J. H. & Yacoby, A. Unconventional sequence of fractional quantum Hall states in suspended graphene. Science 337, 1196–1199 (2012).

    CAS  Article  Google Scholar 

  23. Shi, H., Pan, H., Zhang, Y.-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys. Rev. B 87, 155304 (2013).

    Article  Google Scholar 

  24. Chang, J., Register, L. & Banerjee, S. K. Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se, Te) metaloxide-semiconductor field effect transistors. J. Appl. Phys. 115, 084506 (2014).

    Article  Google Scholar 

  25. Zibouche, N., Philipsen, P., Heine, T. & Kuc, A. Electron transport in MoWSeS monolayers in the presence of an external electric field. Phys. Chem. Chem. Phys. 16, 11251 (2014).

    CAS  Article  Google Scholar 

  26. Kormányos, A. et al. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater 2, 022001 (2015).

    Article  Google Scholar 

  27. Fang, S. et al. Ab initio tight-binding hamiltonian for transition metal dichalcogenides. Phys Rev. B 92, 205108 (2015).

    Article  Google Scholar 

  28. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011).

    CAS  Article  Google Scholar 

  29. Kravchenko, S. V., Shashkin, A. A., Bloore, D. A. & Klapwijk, T. M. Shubnikov–de Haas oscillations near the metal–insulator transition in a two-dimensional electron system in silicon. Solid State Commun. 116, 495–499 (2000).

    CAS  Article  Google Scholar 

  30. Vakiki, K., Sholnikov, Y. P., Tutuc, E., de Poortere, E. P. & Shageyan, M. Spin susceptibility of two-dimensional electrons in narrow AlAs quantum wells. Phys. Rev. Lett. 92, 226401 (2004).

    Article  Google Scholar 

  31. Tan, Y. -W. et al. Spin susceptibility of a two-dimensional electron system in GaAs towards the weak interaction region. Phys Rev. B 73, 045334 (2006).

    Article  Google Scholar 

  32. Ando, T. & Uemura, Y. Theory of oscillatory g factor in an MOS inversion layer under strong magnetic fields. J. Phys. Soc. Jpn. 37, 1044–1052 (1974).

    CAS  Article  Google Scholar 

  33. Cong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  34. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

Download references


We thank K. F. Mak, A. Young, B. Feldman and M. Goerbig for valuable technical and theoretical discussions. C.R.D. and J.H. acknowledge support from the US Department of Energy, DE-SC0016703. C.R.D. acknowledges partial support from the David and Lucille Packard foundation. Sample fabrication and materials synthesis was supported by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant no. JP15K21722. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement no. DMR-0654118, the State of Florida and the US Department of Energy.

Author information

Authors and Affiliations



M.V.G. and M.Y. performed the experiments and analysed the data. M.Y., M.V.G. and C.R.D. developed the model of the system and wrote the paper. M.Y., M.V.G. and C.F. fabricated the samples. D.R. grew and characterized the single-crystal WSe2, and K.W. and T.T. grew the single-crystal hBN. J.H., X.Z. and C.R.D. advised on the experiments and data analysis, and contributed to the manuscript writing.

Corresponding author

Correspondence to Cory R. Dean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figures S1–S8, 4 references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gustafsson, M.V., Yankowitz, M., Forsythe, C. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nature Mater 17, 411–415 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing