Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organic-based magnon spintronics

Abstract

Magnonics concepts utilize spin-wave quanta (magnons) for information transmission, processing and storage. To convert information carried by magnons into an electric signal promises compatibility of magnonic devices with conventional electronic devices, that is, magnon spintronics1. Magnons in inorganic materials have been studied widely with respect to their generation2,3, transport4,5 and detection6. In contrast, resonant spin waves in the room-temperature organic-based ferrimagnet vanadium tetracyanoethylene (V(TCNE) x (x 2)), were detected only recently7. Herein we report room-temperature coherent magnon generation, transport and detection in films and devices based on V(TCNE) x using three different techniques, which include broadband ferromagnetic resonance (FMR), Brillouin light scattering (BLS) and spin pumping into a Pt adjacent layer. V(TCNE) x can be grown as neat films on a large variety of substrates, and it exhibits extremely low Gilbert damping comparable to that in yttrium iron garnet. Our studies establish an alternative use for organic-based magnets, which, because of their synthetic versatility, may substantially enrich the field of magnon spintronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: FMR in V(TCNE) x films.
Fig. 2: Magnon detection in a 520-nm-thick V(TCNE) x film using BLS spectroscopy at room temperature.
Fig. 3: Observation of a FMR-driven ISHE in V(TCNE) x /Pt bilayers using pulsed and continuous MW excitation.

References

  1. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  2. Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    Article  Google Scholar 

  3. Jungfleisch, M. B. et al. Large spin-wave bullet in a ferrimagnetic insulator driven by the spin Hall effect. Phys. Rev. Lett. 116, 057601 (2016).

    Article  Google Scholar 

  4. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  Google Scholar 

  5. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  6. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  7. Zhu, N. et al. Low loss spin wave resonances in organic-based ferrimagnet vanadium tetracyanoethylene thin films. Appl. Phys. Lett. 109, 082402 (2016).

    Article  Google Scholar 

  8. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  Google Scholar 

  9. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    Article  Google Scholar 

  10. Bauer, H. G., Chauleau, J. Y., Woltersdorf, G. & Back, C. H. Coupling of spinwave modes in wire structures. Appl. Phys. Lett. 104, 102404 (2014).

    Article  Google Scholar 

  11. An, T. et al. Unidirectional spin-wave heat conveyer. Nat. Mater. 12, 549–553 (2013).

    Article  Google Scholar 

  12. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  Google Scholar 

  13. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    Article  Google Scholar 

  14. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

    Article  Google Scholar 

  15. Ellsworth, D. et al. Photo-spin-voltaic effect. Nat. Phys. 12, 861–866 (2016).

    Article  Google Scholar 

  16. Plachy, R. et al. Ferrimagnetic resonance in films of vanadium [tetracyanoethanide] x , grown by chemical vapor deposition. Phys. Rev. B 70, 064411 (2004).

    Article  Google Scholar 

  17. Yu, H. et al. Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition. Appl. Phys. Lett. 105, 012407 (2014).

    Article  Google Scholar 

  18. Miller, J. S. Oliver Kahn Lecture: Composition and structure of the V[TCNE] x (TCNE = tetracyanoethylene) room-temperature, organic-based magnet—a personal perspective. Polyhedron 28, 1596–1605 (2009).

    Article  Google Scholar 

  19. Pokhodnya, K. I., Epstein, A. J. & Miller, J. S. Thin-film V[TCNE] x magnets. Adv. Mater. 12, 410–413 (2000).

    Article  Google Scholar 

  20. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J. & Miller, J. S. A room-temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991).

    Article  Google Scholar 

  21. Yoo, J.-W. et al. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 9, 638–642 (2010).

    Article  Google Scholar 

  22. Fang, L. et al. Electrical spin injection from an organic-based ferrimagnet in a hybrid organic–inorganic heterostructure. Phys. Rev. Lett. 106, 156602 (2011).

    Article  Google Scholar 

  23. Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  Google Scholar 

  24. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009).

    Article  Google Scholar 

  25. Ando, K. et al. Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 10, 655–659 (2011).

    Article  Google Scholar 

  26. Ando, K., Watanabe, S., Mooser, S., Saitoh, E. & Sirringhaus, H. Solution-processed organic spin–charge converter. Nat. Mater. 12, 622–627 (2013).

    Article  Google Scholar 

  27. Watanabe, S. et al. Polaron spin current transport in organic semiconductors. Nat. Phys. 10, 308–313 (2014).

    Article  Google Scholar 

  28. Koopmans, B. Organic spintronics: pumping spins through polymers. Nat. Phys. 10, 249–250 (2014).

    Article  Google Scholar 

  29. Sun, D. et al. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling. Nat. Mater. 15, 863–869 (2016).

    Article  Google Scholar 

  30. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948).

    Article  Google Scholar 

  31. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  32. Jungfleisch, M. B. et al. Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect. Phys. Rev. B 91, 134407 (2015).

    Article  Google Scholar 

  33. Rojas-Sánchez, J. C. et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).

    Article  Google Scholar 

  34. Froning, I. H. et al. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene. Appl. Phys. Lett. 106, 122403 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grant no. DMR-1701427 (p-ISHE measurements), MURI-AFOSR grant FA9550-14-1-0037 (cw ISHE and FMR measurements) and NSF MRSEC grant no. DMR-1121252 (the V(TCNE) x synthesis and film growth). All the authors contributed to the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.V.V., C.B. and J.S.M. were responsible for the project planning, group management and final writing of the manuscript. H.L., C.Z., R.A.D., R.M. and J.H. prepared the organic magnetic films. H.L., C.Z., S.J. and D.S. prepared the ISHE devices. R.A.D. measured the critical temperature using SQUID. H.L., M.G. and D.S. measured the Gilbert damping and inverse spin Hall response using cw MW excitation. H.L. and C.Z. measured the non-thermal magnons using BLS. H.M. and M.K. measured the inverse spin Hall response by pulse MW. All the authors contributed to the results, analysis, discussion and manuscript preparation.

Corresponding author

Correspondence to Z. Valy Vardeny.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figures S1–S9, 13 references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, C., Malissa, H. et al. Organic-based magnon spintronics. Nature Mater 17, 308–312 (2018). https://doi.org/10.1038/s41563-018-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0035-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing