Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrahigh piezoelectricity in ferroelectric ceramics by design


Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N−1 and dielectric permittivity ε33/ε0 above 13,000 in a Sm-doped PMN–PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenomenological illustration of the enhanced piezoelectricity in a homogeneous ferroelectric system and a ferroelectric system with local structural heterogeneity.
Fig. 2: Piezoelectric and dielectric properties of Sm-PMN–PT ceramics.
Fig. 3: Microstructure of 2.5Sm-PMN–31PT.
Fig. 4: Temperature-dependent dielectric properties of the 2.5Sm-PMN–31PT and PMN–36PT ceramics.

Similar content being viewed by others


  1. Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, London, 1971).

  2. Zhang, S. J. et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers–a review. Prog. Mater. Sci. 68, 1–66 (2015).

    Article  Google Scholar 

  3. Rödel, J. et al. Perspective on the development of lead‐free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009).

    Article  Google Scholar 

  4. Lines, M. E., & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977).

  5. Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663–2676 (2005).

    Article  Google Scholar 

  6. Li, F., Jin, L., Xu, Z. & Zhang, S. J. Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014).

    Article  Google Scholar 

  7. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

    Article  Google Scholar 

  8. Wu, Z. & Cohen, R. E. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Phys. Rev. Lett. 95, 037601 (2005).

    Article  Google Scholar 

  9. Nahas, Y. et al. Microscopic origins of the large piezoelectricity of lead free (Ba,Ca)(Zr,Ti) O3. Nat. Commun. 8, 15944 (2017).

    Article  Google Scholar 

  10. Liu, W. & Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  11. Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012).

    Article  Google Scholar 

  12. Budimir, M., Damjanovic, D. & Setter, N. Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3. Phys. Rev. B 73, 174106 (2006).

    Article  Google Scholar 

  13. Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008).

    Article  Google Scholar 

  14. Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–276 (1987).

    Article  Google Scholar 

  15. Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006).

    Article  Google Scholar 

  16. Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

    Article  Google Scholar 

  17. Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

    Article  Google Scholar 

  18. Manley, M. E. et al. Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations. Sci. Adv. 2, e1501814 (2016).

    Article  Google Scholar 

  19. Phelan, D. et al. Role of random electric fields in relaxors. Proc. Natl Acad. Sci. USA 111, 1754–1759 (2014).

    Article  Google Scholar 

  20. Xu, G. Y., Wen, J. S., Stock, C. & Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).

    Article  Google Scholar 

  21. Park, S. E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  Google Scholar 

  22. Service, R. F. Materials science - shape-changing crystals get shiftier. Science 275, 1878 (1997).

    Article  Google Scholar 

  23. Kleemann, W. Relaxor ferroelectrics: Cluster glass ground state via random fields and random bonds. Phys. Status Solidi B 251, 1993–2002 (2014).

    Article  Google Scholar 

  24. Samara, G. A. The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys. Condens. Matter 15, R367–R411 (2003).

    Article  Google Scholar 

  25. Chen, J., Chan, H. M. & Harmer, M. P. Ordering structure and dielectric properties of undoped and La/Na‐doped Pb (Mg1/3Nb2/3)O3. J. Am. Ceram. Soc. 72, 593–598 (1989).

    Article  Google Scholar 

  26. Tang, H. et al. Investigation of dielectric and piezoelectric properties in Pb (Ni1/3Nb2/3)O3–PbHfO3–PbTiO3 ternary system. J. Am. Eur. Soc. 33, 2491–2497 (2013).

    Google Scholar 

  27. Damjanovic, D. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788–1797 (1997).

    Article  Google Scholar 

  28. Cannata, J. M., Williams, J. A., Zhou, Q., Ritter, T. A. & Shung, K. K. Development of a 35-MHz piezo-composite ultrasound array for medical imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 53, 224–236 (2006).

    Article  Google Scholar 

  29. Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).

    Article  Google Scholar 

  30. Noheda, B., Cox, D. E., Shirane, G., Gao, J. & Ye, Z. G. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 66, 054104 (2002).

    Article  Google Scholar 

  31. Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006).

    Article  Google Scholar 

  32. Viehland, D., Jang, S. J., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990).

    Article  Google Scholar 

  33. Nan, C. W., Bichurin, M. I., Dong, S., Viehland, D. & Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Article  Google Scholar 

  34. Ji, Y. C. et al. Ferroic glasses. npj Comput. Mater. 3, 43 (2017).

    Article  Google Scholar 

  35. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  Google Scholar 

Download references


F.L. and T.R.S. acknowledge the ONR support. F.L. also acknowledges the support by the National Natural Science Foundation of China (grant numbers 51572214 and 51761145024) and the 111 Project (B14040). S.Z. acknowledges the support from ONRG (N62909-16-1-2126) and ARC (FT140100698). L.-Q.C. is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-07ER46417. Z.C. thanks M. Cabral from North Carolina State University for the sample preparation guidance and discussions.

Author information

Authors and Affiliations



The project was conceived and designed by F.L., S.Z., L.-Q.C. and T.R.S.; F.L. and L.-Q.C. performed the phase-field simulations; F.L. and D.L. prepared ceramic samples, and performed the dielectric and piezoelectric measurements; Z. Chen, Q.H. and X.L. performed TEM experiments; Z. Cheng., J.W. and C.C.L. performed XRD measurements; F.L., S.Z., L.-Q.C. and T.R.S. wrote the manuscript, and all authors discussed the results.

Corresponding authors

Correspondence to Fei Li, Long-Qing Chen or Shujun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Lin, D., Chen, Z. et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Mater 17, 349–354 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing