Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of reticular chemistry in the design of CO2 reduction catalysts

A Publisher Correction to this article was published on 07 August 2018

This article has been updated

Abstract

The problem with current state-of-the-art catalysts for CO2 photo- or electroreduction is rooted in the notion that no single system can independently control, and thus optimize, the interplay between activity, selectivity and efficiency. At its core, reticular chemistry is recognized for its ability to control, with atomic precision, the chemical and structural features (activity and selectivity) as well as the output optoelectronic properties (efficiency) of porous, crystalline materials. The molecular building blocks that are in a reticular chemist’s toolbox are chosen in such a way that the structures are rationally designed, framework chemistry is performed to integrate catalytically active components, and the manner in which these building blocks are connected endows the material with the desired optoelectronic properties. The fact that these aspects can be fine-tuned independently lends credence to the prospect of reticular chemistry contributing to the design of next-generation CO2 reduction catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The grand challenge in developing CO2 reduction catalysts lies in the interplay between selectivity, activity and efficiency.
Fig. 2: The design of MOFs as CO2 reduction photocatalysts.
Fig. 3: Conceptual principles for developing MOFs/COFs as electrochemical CO2 reduction catalysts.
Fig. 4: Schematic of the proposed photoelectrocatalytic reduction of CO2 to CO by COF-366(Co) in a hypothetical photoelectrochemical cell.

Similar content being viewed by others

Change history

  • 07 August 2018

    In the version of this Perspective originally published, the titles of the references were missing; the online versions have now been amended to include them.

References

  1. Concepcion, J. J., House, R. L., Papanikolas, J. M. & Meyer, T. J. Chemical approaches to artificial photosynthesis. Proc. Natl Acad. Sci. USA 109, 15560–15564 (2012).

    Article  Google Scholar 

  2. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  Google Scholar 

  3. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  Google Scholar 

  4. White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

    Article  Google Scholar 

  5. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  6. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  Google Scholar 

  7. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

    Article  Google Scholar 

  8. Cao, Z. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 8120–8125 (2016).

    Article  Google Scholar 

  9. Domen, K. & Hisatomi, T. Introductory lecture: Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017).

    Article  Google Scholar 

  10. Morris, A. J., Meyer, G. J. & Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 1983–1994 (2009).

    Article  Google Scholar 

  11. Costentin, C., Passard, G., Robert, M. & Savéant, J.-M. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl Acad. Sci. USA 111, 14990–14994 (2014).

    Article  Google Scholar 

  12. Costentin, C., Drouet, S., Robert, M. & Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

    Article  Google Scholar 

  13. Rajeshwar, K., Thomas, A. & Janáky, C. Photocatalytic activity of inorganic semiconductor surfaces: Myths, hype, and reality. J. Phys. Chem. Lett. 6, 139–147 (2015).

    Article  Google Scholar 

  14. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  15. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  Google Scholar 

  16. Lee, J. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  Google Scholar 

  17. Zhang, T. & Lin, W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    Article  Google Scholar 

  18. Farha, O. K. et al. Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012).

    Article  Google Scholar 

  19. Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science 336, 1018–1023 (2012).

    Article  Google Scholar 

  20. Sun, L., Campbell, M. G. & Dincă, M. Electrically conductive porous metal-organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    Article  Google Scholar 

  21. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    Article  Google Scholar 

  22. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  Google Scholar 

  23. Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    Article  Google Scholar 

  24. Hawecker, J., Lehn, J.-M. & Ziessel, R. Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2,2’-bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv. Chim. Acta 69, 1990–2012 (1986).

    Article  Google Scholar 

  25. Keith, J. A., Grice, K. A., Kubiak, C. P. & Carter, E. A. Elucidation of the selectivity of proton-dependent electrocatalytic CO2 reduction by fac-Re(bpy)(CO)3Cl. J. Am. Chem. Soc. 135, 15823–15829 (2013).

    Article  Google Scholar 

  26. Ryu, U. J. et al. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Sci. Rep. 7, 612 (2017).

    Article  Google Scholar 

  27. Wang, D., Huang, R., Liu, W., Sun, D. & Li, Z. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254–4260 (2014).

    Article  Google Scholar 

  28. Whitfield, T. R., Wang, X., Liu, L. & Jacobson, A. J. Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci. 7, 1096–1103 (2005).

    Article  Google Scholar 

  29. Surblé, S., Serre, C., Mellot-Draznieks, C., Millangea, F. & Férey, G. A new isoreticular class of metal-organic frameworks with the MIL-88 topology. Chem. Commun. 0, 284–286 (2008).

    Google Scholar 

  30. Chen, D., Xing, H., Wang, C. & Su, Z. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J. Mater. Chem. A 4, 2657–2662 (2016).

    Article  Google Scholar 

  31. Doan, T. L. H. et al. Tailoring the optical absorption of water-stable Zr(IV)- and Hf(IV)-based metal-organic framework photocatalysts. Chem. Asian J. 10, 2660–2668 (2015).

    Article  Google Scholar 

  32. Nasalevich, M. A. et al. Electronic origins of photocatalytic activity in d 0 metal organic frameworks. Sci. Rep. 6, 23676 (2016).

    Article  Google Scholar 

  33. Dan-Hardi, M. et al. A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857–10859 (2009).

    Article  Google Scholar 

  34. Fu, Y. et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 124, 3420–3423 (2012).

    Article  Google Scholar 

  35. Hendon, C. H. et al. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J. Am. Chem. Soc. 135, 10942–10945 (2013).

    Article  Google Scholar 

  36. Logan, M. W. et al. Systematic variation of the optical bandgap in titanium based isoreticular metal-organic frameworks for photocatalytic reduction of CO2 under blue light. J. Mater. Chem. A 5, 11854–11863 (2017).

    Article  Google Scholar 

  37. Khaletskaya, K. et al. Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles. Chem. Mater. 27, 7248–7257 (2015).

    Article  Google Scholar 

  38. Li, R. et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 26, 4783–4788 (2014).

    Article  Google Scholar 

  39. Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

    Article  Google Scholar 

  40. Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P. & Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 54, 6821–6828 (2015).

    Article  Google Scholar 

  41. Riplinger, C., Sampson, M. D., Ritzmann, A. M., Kubiak, C. P. & Carter, E. A. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. J. Am. Chem. Soc. 136, 16285–16298 (2014).

    Article  Google Scholar 

  42. Lee, Y., Kim, S., Kang, J. K. & Cohen, S. M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. 51, 5735–5738 (2015).

    Article  Google Scholar 

  43. Darago, L. E., Aubrey, M. L., Yu, C. J., Gonzalez, M. I. & Long, J. R. Electronic conductivity, ferromagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal-organic framework. J. Am. Chem. Soc. 137, 15703–15711 (2015).

    Article  Google Scholar 

  44. Clough, A. J. et al. Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc. 139, 10863–10867 (2017).

    Article  Google Scholar 

  45. Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconductivity metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    Article  Google Scholar 

  46. Sun, L. et al. Is iron unique in promoting electrical conductivity in MOFs? Chem. Sci. 8, 4450–4457 (2017).

    Article  Google Scholar 

  47. Janssen, R. A. J. & Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013).

    Article  Google Scholar 

  48. Hendon, C. H., Rieth, A. J., Korzynski, M. D. & Dinca, M. Grand challenges and future opportunities for metal-organic frameworks. ACS Cent. Sci. 3, 554–563 (2017).

    Article  Google Scholar 

  49. Trickett, C. A. et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration, and conversion. Nat. Rev. Mater. 2, 17045 (2017).

    Article  Google Scholar 

  50. Xiao, D. J. et al. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nat. Chem. 6, 590–595 (2014).

    Article  Google Scholar 

  51. Metzger, E. D., Comito, R. J., Hendon, C. H. & Dincă, M. Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4l. J. Am. Chem. Soc. 139, 757–762 (2017).

    Article  Google Scholar 

  52. Costentin, C., Robert, M. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    Article  Google Scholar 

  53. Morris, W. et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg. Chem. 51, 6443–6445 (2012).

    Article  Google Scholar 

  54. Hod, I. et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302–6309 (2015).

    Article  Google Scholar 

  55. Fateeva, A. et al. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440–7444 (2012).

    Article  Google Scholar 

  56. Kornienko, N. et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    Article  Google Scholar 

  57. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  Google Scholar 

  58. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  Google Scholar 

  59. Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Saudi Aramco (ORCP2390) for their continued collaboration and support. C.S.D. would like to acknowledge the Kavli Foundation for support through the Kavli Energy NanoScience Institute Philomathia graduate student fellowship. Y.L. is supported by the graduate student fellowship in the environmental sciences provided by the Philomathia Center. K.E.C. is grateful for discussions with A. Jamal (Saudi Aramco) during the preliminary stages of this manuscript. Finally, we acknowledge M. Prevot (UC Berkeley) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.E.C. and O.M.Y. conceived the general idea behind this Perspective. C.S.D. and K.E.C. wrote the manuscript under the mentorship of O.M.Y. Y.L. aided in figure creation. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Omar M. Yaghi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diercks, C.S., Liu, Y., Cordova, K.E. et al. The role of reticular chemistry in the design of CO2 reduction catalysts. Nature Mater 17, 301–307 (2018). https://doi.org/10.1038/s41563-018-0033-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0033-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing