Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A facile approach to enhance antigen response for personalized cancer vaccination

Abstract

Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR–PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR–PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR–PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PEI can be rapidly incorporated onto MSRs and leads to murine and human DC activation.
Fig. 2: MSR–PEI vaccine enhances DC activation and trafficking in situ.
Fig. 3: MSR–PEI vaccine enhances CD8 cytotoxic T-cell response against OVA.
Fig. 4: MSR–PEI vaccine enhances CD8 cytotoxic T-cell response against E7 and regresses established tumours.
Fig. 5: MSR–PEI vaccine enhances melanoma TIL effector function and induces tumour control and synergy with anti-CTLA4 therapy using combined B16 neoantigens.

Similar content being viewed by others

References

  1. Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125, 3413–3421 (2015).

    Article  Google Scholar 

  2. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  Google Scholar 

  3. Hacohen, N., Fritsch, E. F., Carter, T. A., Lander, E. S. & Wu, C. J. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol. Res. 1, 11–15 (2013).

    Article  Google Scholar 

  4. Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

    Article  Google Scholar 

  5. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  Google Scholar 

  6. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  Google Scholar 

  7. van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16, 219–233 (2016).

    Article  Google Scholar 

  8. Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243–251 (2011).

    Article  Google Scholar 

  9. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    Article  Google Scholar 

  10. Cho, N. H. et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotech. 6, 675–682 (2011).

    Article  Google Scholar 

  11. Cho, H. J. et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol. 18, 509–514 (2000).

    Article  Google Scholar 

  12. Bobisse, S., Foukas, P. G., Coukos, G. & Harari, A. Neoantigen-based cancer immunotherapy. Ann. Transl. Med. 4, 262–270 (2016).

    Article  Google Scholar 

  13. Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    Article  Google Scholar 

  14. Song, W. J., Du, J. Z., Sun, T. M., Zhang, P. Z. & Wang, J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6, 239–246 (2010).

    Article  Google Scholar 

  15. Sakai, S., Yamada, Y., Yamaguchi, T., Ciach, T. & Kawakami, K. Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery. J. Biomed. Mater. Res. A 88, 281–287 (2009).

    Article  Google Scholar 

  16. Oh, Y.-K. et al. Enhanced adjuvanticity of interleukin-2 plasmid DNA administered in polyethylenimine complexes. Vaccine 21, 2837–2843 (2003).

    Article  Google Scholar 

  17. Mulens-Arias, V., Rojas, J. M., Pérez-Yagüe, S., Morales, M. P. & Barber, D. F. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials 52, 494–506 (2015).

    Article  Google Scholar 

  18. Wegmann, F. et al. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat. Biotechnol. 30, 883–888 (2012).

    Article  Google Scholar 

  19. Sheppard, N. C. et al. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int. Immunol. 26, 531–538 (2014).

    Article  Google Scholar 

  20. He, W. et al. Re-polarizing myeloid-derived suppressor cells (MDSCs) with cationic polymers for cancer immunotherapy. Sci. Rep. 6 (2016).

  21. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  Google Scholar 

  22. Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  Google Scholar 

  23. Vollmer, J. & Krieg, A. M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev. 61, 195–204 (2009).

    Article  Google Scholar 

  24. Bartkowiak, T. et al. Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+tumors when combined with an E6/E7 peptide vaccine. Proc. Natl Acad. Sci. USA 112, E5290–E5299 (2015).

    Article  Google Scholar 

  25. Chaturvedi, A. K. Beyond cervical cancer: burden of other HPV-related cancers among men and women. J. Adolesc. Health 46, S20–S26 (2010).

    Article  Google Scholar 

  26. Welters, M. J. et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci. Transl. Med. 8, 334ra352 (2016).

    Article  Google Scholar 

  27. Zwaveling, S. et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 169, 350–358 (2002).

    Article  Google Scholar 

  28. van der Sluis, T. C. et al. Therapeutic peptide vaccine-induced CD8 T cells strongly modulate intratumoral macrophages required for tumor regression. Cancer Immunol. Res. 3, 1042–1051 (2015).

    Article  Google Scholar 

  29. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016).

  30. Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 6, 254ra128 (2014).

    Article  Google Scholar 

  31. Li, W. A. et al. The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials 83, 249–256 (2016).

    Article  Google Scholar 

  32. Kim, J. et al. Effect of pore structure of macroporous poly (lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells. ACS Appl. Mater. Interf. 6, 8505–8512 (2014).

    Article  Google Scholar 

  33. Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

    Article  Google Scholar 

  34. Höpken, U. E. et al. The ratio between dendritic cells and T cells determines the outcome of their encounter: proliferation versus deletion. Eur. J. Immunol. 35, 2851–2863 (2005).

    Article  Google Scholar 

  35. Zhou, P. et al. In vivo discovery of immunotherapy targets in the tumor microenvironment. Nature 506, 52 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. J. Wu (Dana Farber Cancer Institute) for providing the human neoantigen peptides. We are also grateful to G. Dranoff, C. S. Verbeke, G. J. Xu and A. S. Cheung for their helpful discussions and feedback on the manuscript. This work was supported by the National Institutes of Health (NIH) R01EB015498 and R01EB023287, the Melanoma Research Alliance Foundation, the National Science Foundation (NSF) Graduate Research Fellowship Program (AWL) and the Wyss Institute for Biologically Inspired Engineering.

Author information

Authors and Affiliations

Authors

Contributions

A.W.L. and D.J.M. conceived the study, designed the experiments and wrote the manuscript, A.W.L., M.C.S., S.B., Y.C., A.G., A.G.S., J.C.W., M.O.D. and T-Y.S. carried out the experiments. S.B. and K.W.W. designed and carried out the TIL experiments. Y.C. and J.K. designed and carried out the TEM and MSR pore analysis experiments. O.A.A. contributed to the study design.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1–6

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A.W., Sobral, M.C., Badrinath, S. et al. A facile approach to enhance antigen response for personalized cancer vaccination. Nature Mater 17, 528–534 (2018). https://doi.org/10.1038/s41563-018-0028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0028-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research