Letter | Published:

A facile approach to enhance antigen response for personalized cancer vaccination

Nature Materialsvolume 17pages528534 (2018) | Download Citation

Abstract

Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR–PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR–PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR–PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Gubin, M. M., Artyomov, M. N., Mardis, E. R. & Schreiber, R. D. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125, 3413–3421 (2015).

  2. 2.

    Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

  3. 3.

    Hacohen, N., Fritsch, E. F., Carter, T. A., Lander, E. S. & Wu, C. J. Getting personal with neoantigen-based therapeutic cancer vaccines. Cancer Immunol. Res. 1, 11–15 (2013).

  4. 4.

    Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

  5. 5.

    Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

  6. 6.

    Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

  7. 7.

    van der Burg, S. H., Arens, R., Ossendorp, F., van Hall, T. & Melief, C. J. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 16, 219–233 (2016).

  8. 8.

    Moon, J. J. et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 10, 243–251 (2011).

  9. 9.

    Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

  10. 10.

    Cho, N. H. et al. A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotech. 6, 675–682 (2011).

  11. 11.

    Cho, H. J. et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat. Biotechnol. 18, 509–514 (2000).

  12. 12.

    Bobisse, S., Foukas, P. G., Coukos, G. & Harari, A. Neoantigen-based cancer immunotherapy. Ann. Transl. Med. 4, 262–270 (2016).

  13. 13.

    Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

  14. 14.

    Song, W. J., Du, J. Z., Sun, T. M., Zhang, P. Z. & Wang, J. Gold nanoparticles capped with polyethyleneimine for enhanced siRNA delivery. Small 6, 239–246 (2010).

  15. 15.

    Sakai, S., Yamada, Y., Yamaguchi, T., Ciach, T. & Kawakami, K. Surface immobilization of poly(ethyleneimine) and plasmid DNA on electrospun poly(L-lactic acid) fibrous mats using a layer-by-layer approach for gene delivery. J. Biomed. Mater. Res. A 88, 281–287 (2009).

  16. 16.

    Oh, Y.-K. et al. Enhanced adjuvanticity of interleukin-2 plasmid DNA administered in polyethylenimine complexes. Vaccine 21, 2837–2843 (2003).

  17. 17.

    Mulens-Arias, V., Rojas, J. M., Pérez-Yagüe, S., Morales, M. P. & Barber, D. F. Polyethylenimine-coated SPIONs trigger macrophage activation through TLR-4 signaling and ROS production and modulate podosome dynamics. Biomaterials 52, 494–506 (2015).

  18. 18.

    Wegmann, F. et al. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat. Biotechnol. 30, 883–888 (2012).

  19. 19.

    Sheppard, N. C. et al. Polyethyleneimine is a potent systemic adjuvant for glycoprotein antigens. Int. Immunol. 26, 531–538 (2014).

  20. 20.

    He, W. et al. Re-polarizing myeloid-derived suppressor cells (MDSCs) with cationic polymers for cancer immunotherapy. Sci. Rep. 6 (2016).

  21. 21.

    Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

  22. 22.

    Eisenbarth, S. C., Colegio, O. R., O’Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

  23. 23.

    Vollmer, J. & Krieg, A. M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv. Drug Deliv. Rev. 61, 195–204 (2009).

  24. 24.

    Bartkowiak, T. et al. Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+tumors when combined with an E6/E7 peptide vaccine. Proc. Natl Acad. Sci. USA 112, E5290–E5299 (2015).

  25. 25.

    Chaturvedi, A. K. Beyond cervical cancer: burden of other HPV-related cancers among men and women. J. Adolesc. Health 46, S20–S26 (2010).

  26. 26.

    Welters, M. J. et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci. Transl. Med. 8, 334ra352 (2016).

  27. 27.

    Zwaveling, S. et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol. 169, 350–358 (2002).

  28. 28.

    van der Sluis, T. C. et al. Therapeutic peptide vaccine-induced CD8 T cells strongly modulate intratumoral macrophages required for tumor regression. Cancer Immunol. Res. 3, 1042–1051 (2015).

  29. 29.

    Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016).

  30. 30.

    Kvistborg, P. et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 6, 254ra128 (2014).

  31. 31.

    Li, W. A. et al. The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials 83, 249–256 (2016).

  32. 32.

    Kim, J. et al. Effect of pore structure of macroporous poly (lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells. ACS Appl. Mater. Interf. 6, 8505–8512 (2014).

  33. 33.

    Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402–1410 (2016).

  34. 34.

    Höpken, U. E. et al. The ratio between dendritic cells and T cells determines the outcome of their encounter: proliferation versus deletion. Eur. J. Immunol. 35, 2851–2863 (2005).

  35. 35.

    Zhou, P. et al. In vivo discovery of immunotherapy targets in the tumor microenvironment. Nature 506, 52 (2014).

Download references

Acknowledgements

The authors would like to thank C. J. Wu (Dana Farber Cancer Institute) for providing the human neoantigen peptides. We are also grateful to G. Dranoff, C. S. Verbeke, G. J. Xu and A. S. Cheung for their helpful discussions and feedback on the manuscript. This work was supported by the National Institutes of Health (NIH) R01EB015498 and R01EB023287, the Melanoma Research Alliance Foundation, the National Science Foundation (NSF) Graduate Research Fellowship Program (AWL) and the Wyss Institute for Biologically Inspired Engineering.

Author information

Affiliations

  1. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

    • Aileen Weiwei Li
    • , Miguel C. Sobral
    • , Maxence O. Dellacherie
    • , Ting-Yu Shih
    •  & David J. Mooney
  2. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA

    • Aileen Weiwei Li
    • , Miguel C. Sobral
    • , Amanda Graveline
    • , Alexander G. Stafford
    • , James C. Weaver
    • , Maxence O. Dellacherie
    • , Ting-Yu Shih
    • , Omar A. Ali
    •  & David J. Mooney
  3. Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA

    • Soumya Badrinath
    •  & Kai W. Wucherpfennig
  4. School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea

    • Youngjin Choi
    •  & Jaeyun Kim
  5. Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Suwon, Republic of Korea

    • Jaeyun Kim
  6. Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea

    • Jaeyun Kim

Authors

  1. Search for Aileen Weiwei Li in:

  2. Search for Miguel C. Sobral in:

  3. Search for Soumya Badrinath in:

  4. Search for Youngjin Choi in:

  5. Search for Amanda Graveline in:

  6. Search for Alexander G. Stafford in:

  7. Search for James C. Weaver in:

  8. Search for Maxence O. Dellacherie in:

  9. Search for Ting-Yu Shih in:

  10. Search for Omar A. Ali in:

  11. Search for Jaeyun Kim in:

  12. Search for Kai W. Wucherpfennig in:

  13. Search for David J. Mooney in:

Contributions

A.W.L. and D.J.M. conceived the study, designed the experiments and wrote the manuscript, A.W.L., M.C.S., S.B., Y.C., A.G., A.G.S., J.C.W., M.O.D. and T-Y.S. carried out the experiments. S.B. and K.W.W. designed and carried out the TIL experiments. Y.C. and J.K. designed and carried out the TEM and MSR pore analysis experiments. O.A.A. contributed to the study design.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to David J. Mooney.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–13, Supplementary Tables 1–6

  2. Life Sciences Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41563-018-0028-2