Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures

Abstract

Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: GVs produce susceptibility-based MRI contrast.
Fig. 2: Background-free acoustically modulated imaging.
Fig. 3: Background-free imaging of GVs in mammalian tissues.
Fig. 4: Acoustically modulated reporter gene imaging in living cells.
Fig. 5: Acoustically multiplexed MRI.
Fig. 6: Multiparametric MRI fingerprinting and clustering-based molecular sensors.

References

  1. 1.

    Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).

    CAS  Google Scholar 

  2. 2.

    Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493 (1990).

    CAS  Google Scholar 

  3. 3.

    Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 11, 450–454 (2005).

    CAS  Google Scholar 

  4. 4.

    Cohen, B., Dafni, H., Meir, G., Harmelin, A. & Neeman, M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7, 109–117 (2005).

    CAS  Google Scholar 

  5. 5.

    Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotech. 25, 217–219 (2007).

    CAS  Google Scholar 

  6. 6.

    Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E. & Sherry, A. D. PARACEST agents: modulating MRI contrast via water proton exchange. Acc. Chem. Res. 36, 783–790 (2003).

    CAS  Google Scholar 

  7. 7.

    Taratula, O. & Dmochowski, I. J. Functionalized 129Xe contrast agents for magnetic resonance imaging. Curr. Opin. Chem. Biol. 14, 97–104 (2010).

    Google Scholar 

  8. 8.

    Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994).

    CAS  Google Scholar 

  9. 9.

    Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).

    CAS  Google Scholar 

  10. 10.

    Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).

    CAS  Google Scholar 

  11. 11.

    Bourdeau, R. W. et al. Acoustic reporter genes for non-invasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

    CAS  Google Scholar 

  12. 12.

    Lakshmanan, A. et al. Molecular engineering of acoustic protein nanostructures. ACS Nano 10, 7314–7322 (2016).

    CAS  Google Scholar 

  13. 13.

    Puderbach, M. et al. MR imaging of the chest: a practical approach at 1.5 T. Eur. J. Radiol. 64, 345–355 (2007).

    CAS  Google Scholar 

  14. 14.

    Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotech. 9, 311–316 (2014).

    CAS  Google Scholar 

  15. 15.

    Terreno, E., Castelli, D. D., Viale, A. & Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010).

    CAS  Google Scholar 

  16. 16.

    Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).

    CAS  Google Scholar 

  17. 17.

    Brown, R. W., Cheng, Y.-C. N., Haacke, E. M., Thompson, M. R. & Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, Hoboken, NJ, 2014).

    Google Scholar 

  18. 18.

    Haacke, E. M., Mittal, S., Wu, Z., Neelavalli, J. & Cheng, Y.-C. N. Susceptibility-weighted imaging: technical aspects and clinical applications, Part 1. Am. J. Neuroradiol. 30, 19–30 (2009).

    CAS  Google Scholar 

  19. 19.

    Wang, Y. & Liu, T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73, 82–101 (2015).

    CAS  Google Scholar 

  20. 20.

    Mukherjee, A., Davis, H. C., Ramesh, P., Lu, G. J. & Shapiro, M. G. Biomolecular MRI reporters: evolution of new mechanisms. Prog. Nucl. Magn. Reson. Spectrosc. 102/103, 32–42 (2017).

    Google Scholar 

  21. 21.

    Ahrens, E. T. & Bulte, J. W. M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13, 755–763 (2013).

    CAS  Google Scholar 

  22. 22.

    Cunningham, C. H. et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 53, 999–1005 (2005).

    CAS  Google Scholar 

  23. 23.

    Stuber, M. et al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn. Reson. Med. 58, 1072–1077 (2007).

    Google Scholar 

  24. 24.

    Mani, V., Briley-Saebo, K. C., Itskovich, V. V., Samber, D. D. & Fayad, Z. A. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn. Reson. Med. 55, 126–135 (2006).

    CAS  Google Scholar 

  25. 25.

    Bulte, J. W. et al. Quantitative “Hot Spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1, 91–97 (2015).

    CAS  Google Scholar 

  26. 26.

    Gleich, B. & Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005).

    CAS  Google Scholar 

  27. 27.

    Goodwill, P. W. et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv. Mater. 24, 3870–3877 (2012).

    CAS  Google Scholar 

  28. 28.

    Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005).

    CAS  Google Scholar 

  29. 29.

    Jolesz, F. A. MRI-guided focused ultrasound surgery. Annu. Rev. Med. 60, 417–430 (2009).

    CAS  Google Scholar 

  30. 30.

    Gandhi, S. N., Brown, M. A., Wong, J. G., Aguirre, D. A. & Sirlin, C. B. MR contrast agents for liver imaging: what, when, how. Radiographics 26, 1621–1636 (2006).

    Google Scholar 

  31. 31.

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  Google Scholar 

  32. 32.

    Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).

    CAS  Google Scholar 

  33. 33.

    McMahon, M. T. et al. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 60, 803–812 (2008).

    CAS  Google Scholar 

  34. 34.

    Yablonskiy, D. A. & Haacke, E. M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn. Reson. Med. 32, 749–763 (1994).

    CAS  Google Scholar 

  35. 35.

    Hung, A. H., Lilley, L. M., Hu, F., Harrison, V. S. & Meade, T. J. Magnetic barcode imaging for contrast agents. Magn. Reson. Med. 77, 970–978 (2016).

  36. 36.

    Perez, J. M., Josephson, L., O’Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).

    CAS  Google Scholar 

  37. 37.

    Zabow, G., Dodd, S. J. & Koretsky, A. P. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes. Nature 520, 73–77 (2015).

    CAS  Google Scholar 

  38. 38.

    Shapiro, M. G. et al. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat. Biotechnol. 28, 264–270 (2010).

    CAS  Google Scholar 

  39. 39.

    Atanasijevic, T., Shusteff, M., Fam, P. & Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl Acad. Sci. USA 103, 14707–14712 (2006).

    CAS  Google Scholar 

  40. 40.

    Shapiro, M. G., Szablowski, J. O., Langer, R. & Jasanoff, A. Protein nanoparticles engineered to sense kinase activity in MRI. J. Am. Chem. Soc. 131, 2484–2486 (2009).

    CAS  Google Scholar 

  41. 41.

    Brooks, R. A., Moiny, F. & Gillis, P. On T 2-shortening by weakly magnetized particles: the chemical exchange model. Magn. Reson. Med. 45, 1014–1020 (2001).

    CAS  Google Scholar 

  42. 42.

    Gillis, P. & Koenig, S. H. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn. Reson. Med. 5, 323–345 (1987).

    CAS  Google Scholar 

  43. 43.

    Matsumoto, Y. & Jasanoff, A. T 2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn. Reson. Imaging 26, 994–998 (2008).

    CAS  Google Scholar 

  44. 44.

    Jaffer, F. A., Libby, P. & Weissleder, R. Molecular and cellular imaging of atherosclerosisemerging applications. J. Am. Coll. Cardiol. 47, 1328–1338 (2006).

    CAS  Google Scholar 

  45. 45.

    Barrett, T., Brechbiel, M., Bernardo, M. & Choyke, P. L. MRI of tumor angiogenesis. J. Magn. Reson. Imaging 26, 235–249 (2007).

    Google Scholar 

  46. 46.

    Li, Z. et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26, 864–873 (2008).

    CAS  Google Scholar 

  47. 47.

    Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc. 12, 2050 (2017).

    CAS  Google Scholar 

  48. 48.

    Strunk, T. et al. Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo. Mol. Microbiol. 81, 56–68 (2011).

    CAS  Google Scholar 

  49. 49.

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    CAS  Google Scholar 

  50. 50.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  51. 51.

    Abdul-Rahman, H. S. et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl. Opt. 46, 6623–6635 (2007).

    Google Scholar 

  52. 52.

    Schweser, F., Deistung, A., Lehr, B. W. & Reichenbach, J. R. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage 54, 2789–2807 (2011).

    Google Scholar 

  53. 53.

    Tang, J., Neelavalli, J., Liu, S., Cheng, Y.-C. N. & Haacke, E. M. in Susceptibility Weighted Imaging in MRI (eds Haacke, E. M. & Reichenbach, J. R.) 461–485 (Wiley, Hoboken, NJ, 2011).

  54. 54.

    Choi, J. J., Pernot, M., Small, S. A. & Konofagou, E. E. Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med. Biol. 33, 95–104 (2007).

    Google Scholar 

  55. 55.

    Meeker, D. Finite Element Method Magnetics (FEMM) Version 4, 32 (2010).

Download references

Acknowledgements

We acknowledge Arnab Mukherjee, Pradeep Ramesh, Hunter Davis, Russell Jacobs, Xiaowei Zhang and Michael Tyszka for helpful discussions. A.F. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada. A.L. acknowledges financial support from National Science Foundation. This project was supported by the National Institutes of Health (grant EB018975). M.G.S. also acknowledges funding from the Dana Foundation, the Burroughs Wellcome Career Award at the Scientific Interface, the Packard Fellowship in Science and Engineering and the Heritage Medical Research Institute.

Author information

Affiliations

Authors

Contributions

G.J.L. and M.G.S. conceived the study. G.J.L., A.F. and J.O.S., A.L.G. and M.G.S. designed, planned and carried out the experiments and analysed data. S.B. provided software for QSM analysis. A.L. and R.W.B. provided reagents. All authors discussed the results. G.J.L. and M.G.S. wrote the manuscript with input from all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mikhail G. Shapiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–2, Supplementary References 1–9.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, G.J., Farhadi, A., Szablowski, J.O. et al. Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures. Nature Mater 17, 456–463 (2018). https://doi.org/10.1038/s41563-018-0023-7

Download citation

Further reading