Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Caravan, P., Ellison, J. J., McMurry, T. J. & Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).

  2. 2.

    Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493 (1990).

  3. 3.

    Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 11, 450–454 (2005).

  4. 4.

    Cohen, B., Dafni, H., Meir, G., Harmelin, A. & Neeman, M. Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7, 109–117 (2005).

  5. 5.

    Gilad, A. A. et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotech. 25, 217–219 (2007).

  6. 6.

    Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E. & Sherry, A. D. PARACEST agents: modulating MRI contrast via water proton exchange. Acc. Chem. Res. 36, 783–790 (2003).

  7. 7.

    Taratula, O. & Dmochowski, I. J. Functionalized 129Xe contrast agents for magnetic resonance imaging. Curr. Opin. Chem. Biol. 14, 97–104 (2010).

  8. 8.

    Walsby, A. E. Gas vesicles. Microbiol. Rev. 58, 94–144 (1994).

  9. 9.

    Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).

  10. 10.

    Li, N. & Cannon, M. C. Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J. Bacteriol. 180, 2450–2458 (1998).

  11. 11.

    Bourdeau, R. W. et al. Acoustic reporter genes for non-invasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

  12. 12.

    Lakshmanan, A. et al. Molecular engineering of acoustic protein nanostructures. ACS Nano 10, 7314–7322 (2016).

  13. 13.

    Puderbach, M. et al. MR imaging of the chest: a practical approach at 1.5 T. Eur. J. Radiol. 64, 345–355 (2007).

  14. 14.

    Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotech. 9, 311–316 (2014).

  15. 15.

    Terreno, E., Castelli, D. D., Viale, A. & Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010).

  16. 16.

    Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).

  17. 17.

    Brown, R. W., Cheng, Y.-C. N., Haacke, E. M., Thompson, M. R. & Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley, Hoboken, NJ, 2014).

  18. 18.

    Haacke, E. M., Mittal, S., Wu, Z., Neelavalli, J. & Cheng, Y.-C. N. Susceptibility-weighted imaging: technical aspects and clinical applications, Part 1. Am. J. Neuroradiol. 30, 19–30 (2009).

  19. 19.

    Wang, Y. & Liu, T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73, 82–101 (2015).

  20. 20.

    Mukherjee, A., Davis, H. C., Ramesh, P., Lu, G. J. & Shapiro, M. G. Biomolecular MRI reporters: evolution of new mechanisms. Prog. Nucl. Magn. Reson. Spectrosc. 102/103, 32–42 (2017).

  21. 21.

    Ahrens, E. T. & Bulte, J. W. M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 13, 755–763 (2013).

  22. 22.

    Cunningham, C. H. et al. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 53, 999–1005 (2005).

  23. 23.

    Stuber, M. et al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn. Reson. Med. 58, 1072–1077 (2007).

  24. 24.

    Mani, V., Briley-Saebo, K. C., Itskovich, V. V., Samber, D. D. & Fayad, Z. A. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn. Reson. Med. 55, 126–135 (2006).

  25. 25.

    Bulte, J. W. et al. Quantitative “Hot Spot” imaging of transplanted stem cells using superparamagnetic tracers and magnetic particle imaging (MPI). Tomography 1, 91–97 (2015).

  26. 26.

    Gleich, B. & Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005).

  27. 27.

    Goodwill, P. W. et al. X-space MPI: magnetic nanoparticles for safe medical imaging. Adv. Mater. 24, 3870–3877 (2012).

  28. 28.

    Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005).

  29. 29.

    Jolesz, F. A. MRI-guided focused ultrasound surgery. Annu. Rev. Med. 60, 417–430 (2009).

  30. 30.

    Gandhi, S. N., Brown, M. A., Wong, J. G., Aguirre, D. A. & Sirlin, C. B. MR contrast agents for liver imaging: what, when, how. Radiographics 26, 1621–1636 (2006).

  31. 31.

    Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

  32. 32.

    Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).

  33. 33.

    McMahon, M. T. et al. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 60, 803–812 (2008).

  34. 34.

    Yablonskiy, D. A. & Haacke, E. M. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn. Reson. Med. 32, 749–763 (1994).

  35. 35.

    Hung, A. H., Lilley, L. M., Hu, F., Harrison, V. S. & Meade, T. J. Magnetic barcode imaging for contrast agents. Magn. Reson. Med. 77, 970–978 (2016).

  36. 36.

    Perez, J. M., Josephson, L., O’Loughlin, T., Hogemann, D. & Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002).

  37. 37.

    Zabow, G., Dodd, S. J. & Koretsky, A. P. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes. Nature 520, 73–77 (2015).

  38. 38.

    Shapiro, M. G. et al. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat. Biotechnol. 28, 264–270 (2010).

  39. 39.

    Atanasijevic, T., Shusteff, M., Fam, P. & Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl Acad. Sci. USA 103, 14707–14712 (2006).

  40. 40.

    Shapiro, M. G., Szablowski, J. O., Langer, R. & Jasanoff, A. Protein nanoparticles engineered to sense kinase activity in MRI. J. Am. Chem. Soc. 131, 2484–2486 (2009).

  41. 41.

    Brooks, R. A., Moiny, F. & Gillis, P. On T 2-shortening by weakly magnetized particles: the chemical exchange model. Magn. Reson. Med. 45, 1014–1020 (2001).

  42. 42.

    Gillis, P. & Koenig, S. H. Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn. Reson. Med. 5, 323–345 (1987).

  43. 43.

    Matsumoto, Y. & Jasanoff, A. T 2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn. Reson. Imaging 26, 994–998 (2008).

  44. 44.

    Jaffer, F. A., Libby, P. & Weissleder, R. Molecular and cellular imaging of atherosclerosisemerging applications. J. Am. Coll. Cardiol. 47, 1328–1338 (2006).

  45. 45.

    Barrett, T., Brechbiel, M., Bernardo, M. & Choyke, P. L. MRI of tumor angiogenesis. J. Magn. Reson. Imaging 26, 235–249 (2007).

  46. 46.

    Li, Z. et al. Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26, 864–873 (2008).

  47. 47.

    Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protoc. 12, 2050 (2017).

  48. 48.

    Strunk, T. et al. Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo. Mol. Microbiol. 81, 56–68 (2011).

  49. 49.

    Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

  50. 50.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

  51. 51.

    Abdul-Rahman, H. S. et al. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl. Opt. 46, 6623–6635 (2007).

  52. 52.

    Schweser, F., Deistung, A., Lehr, B. W. & Reichenbach, J. R. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? NeuroImage 54, 2789–2807 (2011).

  53. 53.

    Tang, J., Neelavalli, J., Liu, S., Cheng, Y.-C. N. & Haacke, E. M. in Susceptibility Weighted Imaging in MRI (eds Haacke, E. M. & Reichenbach, J. R.) 461–485 (Wiley, Hoboken, NJ, 2011).

  54. 54.

    Choi, J. J., Pernot, M., Small, S. A. & Konofagou, E. E. Noninvasive, transcranial and localized opening of the blood–brain barrier using focused ultrasound in mice. Ultrasound Med. Biol. 33, 95–104 (2007).

  55. 55.

    Meeker, D. Finite Element Method Magnetics (FEMM) Version 4, 32 (2010).

Download references


We acknowledge Arnab Mukherjee, Pradeep Ramesh, Hunter Davis, Russell Jacobs, Xiaowei Zhang and Michael Tyszka for helpful discussions. A.F. acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada. A.L. acknowledges financial support from National Science Foundation. This project was supported by the National Institutes of Health (grant EB018975). M.G.S. also acknowledges funding from the Dana Foundation, the Burroughs Wellcome Career Award at the Scientific Interface, the Packard Fellowship in Science and Engineering and the Heritage Medical Research Institute.

Author information


  1. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

    • George J. Lu
    • , Jerzy O. Szablowski
    • , Audrey Lee-Gosselin
    • , Raymond W. Bourdeau
    •  & Mikhail G. Shapiro
  2. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA

    • Arash Farhadi
    •  & Anupama Lakshmanan
  3. Department of Radiology, Loma Linda University, Loma Linda, CA, USA

    • Samuel R. Barnes


  1. Search for George J. Lu in:

  2. Search for Arash Farhadi in:

  3. Search for Jerzy O. Szablowski in:

  4. Search for Audrey Lee-Gosselin in:

  5. Search for Samuel R. Barnes in:

  6. Search for Anupama Lakshmanan in:

  7. Search for Raymond W. Bourdeau in:

  8. Search for Mikhail G. Shapiro in:


G.J.L. and M.G.S. conceived the study. G.J.L., A.F. and J.O.S., A.L.G. and M.G.S. designed, planned and carried out the experiments and analysed data. S.B. provided software for QSM analysis. A.L. and R.W.B. provided reagents. All authors discussed the results. G.J.L. and M.G.S. wrote the manuscript with input from all authors. All authors have given approval to the final version of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mikhail G. Shapiro.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–7, Supplementary Tables 1–2, Supplementary References 1–9.

  2. Life Sciences Reporting Summary

About this article

Publication history




Issue Date



Further reading