Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular cross-linking approach for hybrid metal oxides

A Publisher Correction to this article was published on 16 March 2018

This article has been updated

Abstract

There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as ‘molecular cross-linking’, whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2–. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of existing modification methods compared with molecular cross-linking and the preparation of molecularly cross-linked TiO2 (3).
Fig. 2: Structural data for material 3.
Fig. 3: XANES and EXAFS data for anatase TiO2 and material 3.
Fig. 4: Solid-state 11B MAS NMR and PDF analysis.
Fig. 5: Data for the electrochemical properties of material 3.
Fig. 6: Photochemical data for material 3.

Similar content being viewed by others

Change history

  • 16 March 2018

    In the version of this Article originally published, Liban M. A. Saleh was incorrectly listed as Liban A. M. Saleh due to a technical error. This has now been amended in all online versions of the Article.

References

  1. Jaffe, R. L. et al. Energy Critical Elements: Securing Materials for Emerging Technologies (Materials Research Society/American Physical Society, Washington DC, 2011).

    Google Scholar 

  2. Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).

    Article  Google Scholar 

  3. McFarland, E. W. & Metiu, H. Catalysis by doped oxides. Chem. Rev. 113, 4391–4427 (2013).

    Article  Google Scholar 

  4. Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).

    Article  Google Scholar 

  5. Asahi, R., Morikawa, T., Irie, H. & Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114, 9824–9852 (2014).

    Article  Google Scholar 

  6. Kapilashrami, M., Zhang, Y., Liu, Y.-S., Hagfeldt, A. & Guo, J. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014).

    Article  Google Scholar 

  7. Schneider, J. et al. Understanding TiO2 photocatalysis: mechanism and materials. Chem. Rev. 114, 9919–9986 (2014).

    Article  Google Scholar 

  8. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor. Nature 238, 37–38 (1972).

    Article  Google Scholar 

  9. Ma, Y. et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014).

    Article  Google Scholar 

  10. Bai, Y., Mora-Seró, I., De Angelis, F., Bisquert, J. & Wang, P. Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014).

    Article  Google Scholar 

  11. Khan, S. U. M., Al-Shahry, M. & Ingler, W. B. Jr Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002).

    Article  Google Scholar 

  12. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  Google Scholar 

  13. Chen, X., Liu, L. & Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  Google Scholar 

  14. Salzmann, I. & Heimel, G. Toward a comprehensive understanding of molecular doping organic semiconductors. J. Electron Spectrosc. Relat. Phenom. 204, 208–222 (2015).

    Article  Google Scholar 

  15. Pitochelli, A. R. & Hawthorne, M. F. The isolation of the icosahedral B12H12 −2 ion. J. Am. Chem. Soc. 82, 3228–3229 (1960).

    Article  Google Scholar 

  16. Spokoyny, A. M. New ligand platforms featuring boron-rich clusters as organomimetic substituents. Pure Appl. Chem. 85, 903–919 (2013).

    Article  Google Scholar 

  17. Sivaev, I. B., Bregadze, V. I. & Sjöberg, S. Chemistry of closo-dodecaborate anion [B12H12]2–: a review. Collect. Czech. Chem. Commun. 67, 679–727 (2002).

    Article  Google Scholar 

  18. Hawthorne, M. F. & Pushechnikov, A. Polyhedral borane derivatives: unique and versatile structural motifs. Pure Appl. Chem. 84, 2279–2288 (2012).

    Article  Google Scholar 

  19. Dash, B. P., Satapathy, R., Maguire, J. A. & Hosmane, N. S. Polyhedral boron clusters in materials science. New J. Chem. 35, 1955–1972 (2011).

    Article  Google Scholar 

  20. Hansen, B. R. S., Paskevicius, M., Li, H.-W., Akiba, E. & Jensen, T. R. Metal boranes: progress and applications. Coord. Chem. Rev. 323, 60–70 (2016).

    Article  Google Scholar 

  21. Cheng, F. & Jäkle, F. Boron-containing polymers as versatile building blocks for functional nanostructured materials. Polym. Chem. 2, 2122–2132 (2011).

    Article  Google Scholar 

  22. Núñez, R., Romero, I., Teixidor, F. & Viñas, C. Icosahedral boron clusters: a perfect tool for the enhancement of polymer features. Chem. Soc. Rev. 45, 5147–5173 (2016).

    Article  Google Scholar 

  23. Alexandrova, A. N., Boldyrev, A. I., Zhai, H.-J. & Wang, L.-S. All-boron aromatic clusters as potential new inorganic and building blocks in chemistry. Coord. Chem. Rev. 250, 2811–2866 (2006).

    Article  Google Scholar 

  24. Muetterties, E. L. Boron Hydride Chemistry (Academic, New York, NY, 1975).

    Google Scholar 

  25. Farha, O. K. et al. Synthesis of stable dodecaalkoxy derivatives of hypercloso-B12H12. J. Am. Chem. Soc. 127, 18243–18251 (2005).

    Article  Google Scholar 

  26. Wixtrom, A. I. et al. Rapid synthesis of redox-active dodecaborane B12(OR)12 clusters under ambient conditions. Inorg. Chem. Front. 3, 711–717 (2016).

    Article  Google Scholar 

  27. Messina, M. S. et al. Visible-light induced olefin activation using 3D aromatic boron-rich cluster photooxidants. J. Am. Chem. Soc. 138, 6952–6955 (2016).

    Article  Google Scholar 

  28. Qian, E. A. et al. Atomically precise organomimetic cluster nanoparticles assembled via perfluoroaryl-thiol SNAr chemistry. Nat. Chem. 9, 333–340 (2017).

    Article  Google Scholar 

  29. Pan, L. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl Acad. Sci. USA 109, 9287–9292 (2012).

    Article  Google Scholar 

  30. To, J. W. F. et al. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent. Sci. 1, 68–76 (2015).

    Article  Google Scholar 

  31. Mirabelli, M. G. L. & Sneddon, L. G. Synthesis of boron carbide via poly(vinylpentaborane) precursors. J. Am. Chem. Soc. 110, 3305–3307 (1988).

    Article  Google Scholar 

  32. Su, K. & Sneddon, L. G. A polymer precursor route to metal borides. Chem. Mater. 5, 1659–1668 (1993).

    Article  Google Scholar 

  33. Feng, N. et al. Boron environments in B-doped and (B,N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J. Phys. Chem. C 115, 2709–2719 (2011).

    Article  Google Scholar 

  34. Barrow, N. S. et al. Towards homonuclear J-solid-state NMR correlation experiments for half-integer quadrupolar nuclei: experimental and simulated 11B MAS spin-echo dephasing and calculated 2 J BB coupling constants for lithium diborate. Phys. Chem. Chem. Phys. 13, 5778–5789 (2011).

    Article  Google Scholar 

  35. Billinge, S. J. L. & Kanatzidis, M. G. Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chem. Commun. 0, 749–760 (2004).

    Article  Google Scholar 

  36. Lee, M. W., Farha, O. K., Hawthorne, M. F. & Hansch, C. H. Alkoxy derivatives of dodecaborate: discrete nanomolecular ions with tunable pseudometallic properties. Angew. Chem. Int. Ed. 46, 3018–3022 (2007).

    Article  Google Scholar 

  37. Van, N. et al. Oxidative perhydroxylation of [closo-B12H12]2– to the stable inorganic cluster redox system [B12(OH)12]2–/•–: experiment and theory. Chem. Eur. J. 16, 11242–11245 (2010).

    Article  Google Scholar 

  38. Li, Y. et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotech. 7, 394–400 (2012).

    Article  Google Scholar 

  39. Guo, Y.-G., Hu, Y.-S., Sigle, W. & Maier, J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 19, 2087–2091 (2007).

    Article  Google Scholar 

  40. Jiang, C., Hosono, E. & Zhou, H. Nanomaterials for lithium ion batteries. Nano Today 1, 28–33 November, (2006).

    Article  Google Scholar 

  41. Gomes, A., Fernandes, E. & Lima, J. L. F. C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80 (2005).

    Article  Google Scholar 

  42. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  Google Scholar 

  43. Yan, H. et al. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly. Nat. Mater. 16, 349–355 (2017).

    Article  Google Scholar 

  44. Bag, S., Trikalitis, P. N., Chupas, P. J., Armatas, G. S. & Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317, 490–493 (2007).

    Article  Google Scholar 

  45. Song, J. et al. A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate–metal organic framework for aerobic decontamination. J. Am. Chem. Soc. 133, 16839–16846 (2011).

    Article  Google Scholar 

  46. Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).

    Article  Google Scholar 

  47. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    Article  Google Scholar 

  48. Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction and organic photocatalysis. J. Am. Chem. Soc. 133, 13445–13454 (2011).

    Article  Google Scholar 

  49. Goellner, J. F., Gates, B. C., Vayssilov, G. N. & Rösch, N. Structure and bonding of a site-isolated transition metal complex: rhodium dicarbonyl in highly dealuminated zeolite Y. J. Am. Chem. Soc. 122, 8056–8066 (2000).

    Article  Google Scholar 

  50. Pryor, A. Jr. et al. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 7, 10409 (2017).

    Article  Google Scholar 

  51. Yang, Y. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    Article  Google Scholar 

  52. Fung, B. M., Khitrin, A. K. & Ermolav, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    Article  Google Scholar 

  53. Yesinowski, J. P. Finding the true-spin-lattice relaxation time for half-integral nuclei with non-zero quadrupolar couplings. J. Mag. Reson. 252, 135–144 (2015).

    Article  Google Scholar 

  54. Johnston, D. C. Stretched exponential relaxation arising from a continuous sum of exponential decays. Phys. Rev. B. 74, 184430 (2006).

    Article  Google Scholar 

  55. Brouwer, D. H., Kristiansen, P. E., Fyfe, C. A. & Levitt, M. H. Symmetry-based 29Si dipolar recoupling magic angle spinning NMR spectroscopy: a new method for investigating three-dimensional structures of zeolite frameworks. J. Am. Chem. Soc. 127, 542–543 (2005).

    Article  Google Scholar 

  56. Nicholson, R. S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965).

    Article  Google Scholar 

  57. Moldenhauer, J., Meier, M. & Paul, D. W. Rapid and direct determination of diffusion coefficients using microelectrode arrays. J. Electrochem. Soc. 163, H672–H678 (2016).

    Article  Google Scholar 

  58. Konopka, S. J. & McDuffie, B. Diffusion coefficients of ferri-and ferrocyanide ions in aqueous media, using twin-electrode thin-layer electrochemistry. Anal. Chem. 42, 1741–1746 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

A.M.S. thanks the University of California, Los Angeles (UCLA), Department of Chemistry and Biochemistry for start-up funds, 3M for a Non-Tenured Faculty Award and the Alfred P. Sloan Foundation for a research fellowship in chemistry. The authors thank the MRI program of the National Science Foundation (NSF grant no. 1532232 and no.1625776) for sponsoring the acquisition of SSNMR equipment and SQUID, respectively, at UCLA. Z.J.B. was supported by a grant from the BASF Corporation, and the solid-state MAS NMR measurements at the University of California, Santa Barbara (UCSB), made use of the shared facilities of the UCSB MRSEC (NSF DMR 1720256), a member of the Materials Research Facilities Network (www.mrfn.org). E.C.W. and J.T.M. were supported by the National Science Foundation Energy Research Center for Innovative and Strategic Transformations of Alkane Resources (CISTAR) under the cooperative agreement no. EEC-1647722. J.I.Z. thanks the Student and Research Support Fund for financial support. The computational modelling benefited from access to the Extreme Science and Engineering Discovery Environment, which is supported by NSF Grant ACI-1053575. R.R.L. and M.D. were supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences under Contract DE-AC02-06CH11357. This research used resources of the APS, a US DOE Office of Basic Energy Sciences and Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. MRCAT operations, beamline 10-BM, are supported by the DOE and the MRCAT member institutions.

Author information

Authors and Affiliations

Authors

Contributions

A.M.S. developed the concept of molecular cross-linking and supervised the project. D.J., L.M.A.S. and A.M.S. co-designed the experiments, D.J. and L.M.A.S. performed the synthetic experimental work and D.J. performed the majority of the structural characterization and data analysis. Z.J.B. and B.F.C. designed, conducted and interpreted the SSNMR experiments and data. M.F.E.-K., J.Y.H. and, N.M. performed the electrochemical studies and interpreted the data with R.B.K. D.J., L.M.A.S., E.T., Y.S. and K.M. performed the dye degradation experiments. A.I.W. performed the EPR measurements. J.G. performed the resistivity measurements and interpreted the data with X.D. I.B.M. performed the SQUID measurements. S.K. designed and performed the STEM measurements. E.C.W. performed the XANES and EXAFS measurements and analysed the data with J.T.M. P.S.-C. and B.R. performed the mechanistic photochemical work and analysed the data with J.I.Z. R.R.L. and M.D. performed the TGA–MS and TPD ammonia experiments. J.L.B. performed the Raman spectroscopic measurements. C.H.H. performed the computational modelling. M.G.-J. and J.R. performed the TEM measurements and created the 3D reconstruction. K.W.C. collected and interpreted the high-energy X-ray scattering data . D.J., L.M.A.S., A.M.S., Z.J.B. and B.F.C. co-wrote the manuscript. All the authors discussed the results and commented on the manuscript during its preparation.

Corresponding author

Correspondence to Alexander M. Spokoyny.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41563-018-0054-0.

Supplementary information

Supplementary Information

Supplementary Figures 1–58, Supplementary Tables 1–4, Supplementary References 1–12

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D., Saleh, L.M.A., Berkson, Z.J. et al. A molecular cross-linking approach for hybrid metal oxides. Nature Mater 17, 341–348 (2018). https://doi.org/10.1038/s41563-018-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0021-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing