Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

Abstract

Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a ‘soft’ and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Colloidal lead halide perovskite nanocrystals.
Fig. 2: Factors contributing to the defect-tolerant behaviour of LHPs.
Fig. 3: Structural lability of lead halide based perovskite NCs, and stabilization methods.
Fig. 4: Structural and compositional post-synthetic engineering of lead halide perovskites.
Fig. 5: Optoelectronic applications of LHP NCs.
Fig. 6: LHP NCs as single-photon sources.

References

  1. 1.

    Huang, H. et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater. 8, e328 (2016).

    CAS  Google Scholar 

  2. 2.

    Weidman, M. C., Goodman, A. J. & Tisdale, W. A. Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29, 5019–5030 (2017).

    CAS  Google Scholar 

  3. 3.

    Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    CAS  Google Scholar 

  4. 4.

    Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  5. 5.

    Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    CAS  Google Scholar 

  6. 6.

    Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Google Scholar 

  7. 7.

    Srivastava, V. et al. Understanding and curing structural defects in colloidal gaas nanocrystals. Nano Lett. 17, 2094–2101 (2017).

    CAS  Google Scholar 

  8. 8.

    Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    CAS  Google Scholar 

  9. 9.

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  10. 10.

    Huang, H. et al. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 8, 996 (2017).

    Google Scholar 

  11. 11.

    Sichert, J. A. et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 15, 6521–6527 (2015).

    CAS  Google Scholar 

  12. 12.

    Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    CAS  Google Scholar 

  13. 13.

    Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    CAS  Google Scholar 

  14. 14.

    Tong, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. 55, 13887–13892 (2016).

    CAS  Google Scholar 

  15. 15.

    Zhu, Z.-Y. et al. Solvent-Free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. J. Phys. Chem. Lett. 8, 1610–1614 (2017).

    CAS  Google Scholar 

  16. 16.

    Pan, Q. et al. Microwave-assisted synthesis of high-quality all-inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and the application in light emitting diode. J. Mater. Chem. C 5, 10947–10954 (2017).

    CAS  Google Scholar 

  17. 17.

    Chen, S. et al. Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach. Adv. Energy Mater. 1701543 (2017).

    Google Scholar 

  18. 18.

    Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett. 16, 1869–1877 (2016).

    CAS  Google Scholar 

  19. 19.

    Dirin, D. N. et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett. 16, 5866–5874 (2016).

    CAS  Google Scholar 

  20. 20.

    Malgras, V. et al. Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica. J. Am. Chem. Soc. 138, 13874–13881 (2016).

    CAS  Google Scholar 

  21. 21.

    Huang, H. et al. Lead halide perovskite nanocrystals in the research spotlight: stability and defect-tolerance. ACS Energy Lett. 2, 2071–2083 (2017).

    CAS  Google Scholar 

  22. 22.

    Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    CAS  Google Scholar 

  23. 23.

    Kang, J. & Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).

    CAS  Google Scholar 

  24. 24.

    Koscher, B. A., Swabeck, J. K., Bronstein, N. D. & Alivisatos, A. P. Essentially trap-free cspbbr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 139, 6566–6569 (2017).

    CAS  Google Scholar 

  25. 25.

    Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017).

    CAS  Google Scholar 

  26. 26.

    Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    CAS  Google Scholar 

  27. 27.

    Bakulin, A. A. et al. Real-time observation of organic cation reorientation in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 3663–3669 (2015).

    CAS  Google Scholar 

  28. 28.

    Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).

    CAS  Google Scholar 

  29. 29.

    Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    CAS  Google Scholar 

  30. 30.

    De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Google Scholar 

  31. 31.

    Trots, D. M. & Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 69, 2520–2526 (2008).

    CAS  Google Scholar 

  32. 32.

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    CAS  Google Scholar 

  33. 33.

    Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Google Scholar 

  34. 34.

    Protesescu, L. et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    CAS  Google Scholar 

  35. 35.

    Wang, C., Chesman, A. S. R. & Jasieniak, J. J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem. Commun. 53, 232–235 (2017).

    CAS  Google Scholar 

  36. 36.

    Beal, R. E. et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 7, 746–751 (2016).

    CAS  Google Scholar 

  37. 37.

    Akkerman, Q. A., Meggiolaro, D., Dang, Z., De Angelis, F. & Manna, L. Fluorescent alloy CsPbxMn1–xI3 perovskite nanocrystals with high structural and optical stability. ACS Energy Lett. 2, 2183–2186 (2017).

    CAS  Google Scholar 

  38. 38.

    Zou, S. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443–11450 (2017).

    CAS  Google Scholar 

  39. 39.

    Hu, Y. et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2, 2219–2227 (2017).

    CAS  Google Scholar 

  40. 40.

    Ai, B. et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J. Am. Ceram. Soc. 99, 2875–2877 (2016).

    CAS  Google Scholar 

  41. 41.

    Liu, S., Luo, Y., He, M., Liang, X. & Xiang, W. Novel CsPbI3 QDs glass with chemical stability and optical properties. J. Eur. Ceram. Soc. 38, 1998–2004 (2017).

    Google Scholar 

  42. 42.

    Ai, B. et al. Low temperature photoluminescence properties of CsPbBr3 quantum dots embedded in glasses. Phys. Chem. Chem. Phys. 19, 17349–17355 (2017).

    CAS  Google Scholar 

  43. 43.

    Di, X. et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs. Chem. Commun. 53, 11068–11071 (2017).

    CAS  Google Scholar 

  44. 44.

    Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    CAS  Google Scholar 

  45. 45.

    Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    CAS  Google Scholar 

  46. 46.

    Akkerman, Q. A. et al. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano Lett. 17, 1924–1930 (2017).

    CAS  Google Scholar 

  47. 47.

    van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

    Google Scholar 

  48. 48.

    Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    CAS  Google Scholar 

  49. 49.

    De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Google Scholar 

  50. 50.

    Liu, W. et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016).

    CAS  Google Scholar 

  51. 51.

    Guria, A. K., Dutta, S. K., Adhikari, S. D. & Pradhan, N. Doping Mn2+ in lead halide perovskite nanocrystals: successes and challenges. ACS Energy Lett. 2, 1014–1021 (2017).

    CAS  Google Scholar 

  52. 52.

    Palazon, F. et al. Changing the dimensionality of cesium lead bromide nanocrystals by reversible postsynthesis transformations with amines. Chem. Mater. 29, 4167–4171 (2017).

    CAS  Google Scholar 

  53. 53.

    Wu, L. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 17, 5799–5804 (2017).

    CAS  Google Scholar 

  54. 54.

    Liu, Z. et al. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 139, 5309–5312 (2017).

    CAS  Google Scholar 

  55. 55.

    Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016).

    CAS  Google Scholar 

  56. 56.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    CAS  Google Scholar 

  57. 57.

    Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012–1057 (2015).

    CAS  Google Scholar 

  58. 58.

    Zhang, H. et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Adv. Funct. Mater. 27, 1604382 (2017).

    Google Scholar 

  59. 59.

    Quan, L. N. et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv. Mater. 27, 1605945 (2017).

    Google Scholar 

  60. 60.

    Guhrenz, C. et al. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 28, 9033–9040 (2016).

    CAS  Google Scholar 

  61. 61.

    Li, J. et al. 50-fold eqe improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017).

    Google Scholar 

  62. 62.

    Chiba, T. et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 9, 18054–18060 (2017).

    CAS  Google Scholar 

  63. 63.

    Zhang, X. et al. Bright perovskite nanocrystal films for efficient light-emitting devices. J. Phys. Chem. Lett. 7, 4602–4610 (2016).

    CAS  Google Scholar 

  64. 64.

    Deng, W. et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater. 26, 4797–4802 (2016).

    CAS  Google Scholar 

  65. 65.

    Akkerman, Q. A. et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2, 16194 (2016).

    Google Scholar 

  66. 66.

    Engler, R. E., MacDougall, L. S., Xu, J. B. & Willis, J. Supplemental Statement on Life Cycle Assessment (QD Vision, 2015); http://go.nature.com/2ERm8Fs

  67. 67.

    Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    CAS  Google Scholar 

  68. 68.

    Zhou, C. et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Edit. 56, 9018–9022 (2017).

    CAS  Google Scholar 

  69. 69.

    Giustino, F. & Snaith, H. J. Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 1233–1240 (2016).

    CAS  Google Scholar 

  70. 70.

    McCall, K. M., Stoumpos, C. C., Kostina, S. S., Kanatzidis, M. G. & Wessels, T. C. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (a = Cs, Rb; M = Bi, Sb). Chem. Mater. 29, 4129–4145 (2017).

    CAS  Google Scholar 

  71. 71.

    Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A Bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).

    CAS  Google Scholar 

  72. 72.

    Volonakis, G. et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254–1259 (2016).

    CAS  Google Scholar 

  73. 73.

    Raino, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 10, 2485–2490 (2016).

    CAS  Google Scholar 

  74. 74.

    Becker, M. A. et al. Bright triplet excitons in lead halide perovskites. Nature 553, 189–193 (2018).

    CAS  Google Scholar 

  75. 75.

    Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotech. 11, 661–671 (2016).

    CAS  Google Scholar 

  76. 76.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Google Scholar 

  77. 77.

    Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    CAS  Google Scholar 

  78. 78.

    Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    CAS  Google Scholar 

  79. 79.

    Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).

    Google Scholar 

  80. 80.

    Nirmal, M. et al. Observation of the "dark exciton" in CdSe quantum dots. Phys. Rev. Lett. 75, 3728–3731 (1995).

    CAS  Google Scholar 

  81. 81.

    Tighineanu, P. et al. Single-photon superradiance from a quantum dot. Phys. Rev. Lett. 116, 163604 (2016).

    Google Scholar 

  82. 82.

    Park, Y.-S., Guo, S., Makarov, N. S. & Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    CAS  Google Scholar 

  83. 83.

    Hu, F. et al. Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 16, 6425–6430 (2016).

    CAS  Google Scholar 

  84. 84.

    Utzat, H. et al. Probing linewidths and biexciton quantum yields of single cesium lead halide nanocrystals in solution. Nano Lett. 17, 6838–6846 (2017).

    CAS  Google Scholar 

  85. 85.

    Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    CAS  Google Scholar 

  86. 86.

    Nothaft, M. et al. Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3, 628 (2012).

    Google Scholar 

  87. 87.

    Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11, 3819–3831 (2017).

    CAS  Google Scholar 

  88. 88.

    Saidaminov, M. I. et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett. 1, 840–845 (2016).

    CAS  Google Scholar 

  89. 89.

    Nikl, M. et al. Photoluminescence of Cs4PbBr6 crystals and thin films. Chem. Phys. Lett. 306, 280–284 (1999).

    CAS  Google Scholar 

  90. 90.

    Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996).

    CAS  Google Scholar 

  91. 91.

    Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Google Scholar 

  92. 92.

    Bhaumik, S. et al. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles. Chem. Commun. 52, 7118–7121 (2016).

    CAS  Google Scholar 

  93. 93.

    Chen, W. et al. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun. 8, 15198 (2017).

    CAS  Google Scholar 

  94. 94.

    Liu, F. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11, 10373–10383 (2017).

    CAS  Google Scholar 

  95. 95.

    Gross, E. F. & Kapliansky, A. A. A spectroscopic study of absorption and luminescence of cuprous chloride, introduced into a crystal of rock salt. Opt. Spektrosk. 2, 204–209 (1957).

    CAS  Google Scholar 

  96. 96.

    Berry, C. R. Structture and opticcal absorption of AgI microcrystals. Phys. Rev. B 161, 848–851 (1967).

    CAS  Google Scholar 

  97. 97.

    Ekimov, A. I. & Onushchenko, A. A. Quantum size effects in 3-dimensional microscopic semiconductor crystals. J. Exp. Theor. Phys. Lett. 34, 345–349 (1981).

    Google Scholar 

  98. 98.

    Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982).

    Google Scholar 

  99. 99.

    Wells, H. L. Über die Cäsium- und Kalium-Bleihalogenide. Z. Anorg. Allg. Chem. 3, 195–210 (1893).

    Google Scholar 

  100. 100.

    Moller, C. K. A phase transition in caesium plumbochloride. Nature 180, 981–982 (1957).

    CAS  Google Scholar 

  101. 101.

    Moller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. Nature 182, 1436–1436 (1958).

    CAS  Google Scholar 

  102. 102.

    Mizusaki, J., Arai, K. & Fueki, K. Ionic-conduction of the perovskite-type halides. Solid State Ion. 11, 203–211 (1983).

    CAS  Google Scholar 

  103. 103.

    Radhakrishna, S. Polarised luminescence from lead centers in cesium halides. J. Lumin. 12, 409–411 (1976).

    Google Scholar 

  104. 104.

    Nikl, M. et al. Optical-properties of the Pb2+ based aggregated phase in a CsCl host crystal – quantum-confinement effects. Phys. Rev. B 51, 5192–5199 (1995).

    CAS  Google Scholar 

  105. 105.

    Nikl, M. et al. Quantum size effect in the excitonic luminescence of CsPbX3-like quantum dots in CsX (X = Cl, Br) single crystal host. J. Lumin. 72, 377–379 (1997).

    Google Scholar 

  106. 106.

    Aceves, R. et al. Spectroscopy of CsPbBr3 quantum dots in CsBr:Pb crystals. J. Lumin. 93, 27–41 (2001).

    CAS  Google Scholar 

  107. 107.

    Kondo, S., Sakai, T., Tanaka, H. & Saito, T. Amorphization-induced strong localization of electronic states in CsPbBr3 and CsPbCl3 studied by optical absorption measurements. Phys. Rev. B 58, 11401–11407 (1998).

    CAS  Google Scholar 

  108. 108.

    Kondo, S. et al. High intensity photoluminescence of microcrystalline CsPbBr3 films: evidence for enhanced stimulated emission at room temperature. Curr. Appl. Phys. 7, 1–5 (2007).

    Google Scholar 

  109. 109.

    Kondo, S., Saito, T., Asada, H. & Nakagawa, H. Stimulated emission from microcrystalline CsPbBr3 films: edge emission versus surface emission. Mater. Sci. Eng. B 137, 156–161 (2007).

    CAS  Google Scholar 

  110. 110.

    Weber, D. CH3NH3PbX3, ein Pb (II)-System mit Kubischer Perowskitstruktur. Z. Naturforsch. B 33, 1443–1445 (1978).

    Google Scholar 

  111. 111.

    Papavassiliou, G. C. et al. Nanocrystalline/microcrystalline materials based on lead-halide units. J. Mater. Chem. 22, 8271–8280 (2012).

    CAS  Google Scholar 

  112. 112.

    Papavassiliou, G. C., Pagona, G., Mousdis, G. A. & Karousis, N. Enhanced phosphorescence from nanocrystalline/microcrystalline materials based on (CH3NH3)(1-naphthylmethyl ammonium)2Pb2Cl7 and similar compounds. Chem. Phys. Lett. 570, 80–84 (2013).

    CAS  Google Scholar 

  113. 113.

    Aygüler, M. F. et al. Light-emitting electrochemical cells based on hybrid lead halide perovskite nanoparticles. J. Phys. Chem. C 119, 12047–12054 (2015).

    Google Scholar 

  114. 114.

    Weidman, M. C., Seitz, M., Stranks, S. D. & Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016).

    CAS  Google Scholar 

  115. 115.

    Protesescu, L. et al. Monodisperse formamidinium lead bromide nanocrystals with bright and stable green photoluminescence. J. Am. Chem. Soc. 138, 14202–14205 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

Q.A.A and L.M. thank the European Union’s Seventh Framework Programme (grant agreement no. 614897, ERC Consolidator Grant ‘TRANS-NANO’) for funding. M.V.K. is grateful for financial support by the European Research Council under the European Union’s Seventh Framework Programme (grant agreement no. 306733, ERC Starting Grant ‘NANOSOLID’). We thank N. Stadie for reading the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Maksym V. Kovalenko or Liberato Manna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akkerman, Q.A., Rainò, G., Kovalenko, M.V. et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Mater 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing