Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111)


Platinum plays a central role in a variety of electrochemical devices and its practical use depends on the prevention of electrode degradation. However, understanding the underlying atomic processes under conditions of repeated oxidation and reduction inducing irreversible surface structure changes has proved challenging. Here, we examine the correlation between the evolution of the electrochemical signal of Pt(111) and its surface roughening by simultaneously performing cyclic voltammetry and in situ electrochemical scanning tunnelling microscopy (EC-STM). We identify a ‘nucleation and early growth’ regime of nanoisland formation, and a ‘late growth’ regime after island coalescence, which continues up to at least 170 cycles. The correlation analysis shows that each step site that is created in the ‘late growth’ regime contributes equally strongly to both the electrochemical and the roughness evolution. In contrast, in the ‘nucleation and early growth’ regime, created step sites contribute to the roughness, but not to the electrochemical signal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyclic voltammograms of consecutive oxidation–reduction cycles.
Fig. 2: STM images after different numbers of oxidation–reduction cycles.
Fig. 3: Height lines extracted from the STM images in Fig. 2.
Fig. 4: Height-difference correlation functions (C2(r)) as a function of ORC number.
Fig. 5: Correlation between electrochemical and STM data.

Similar content being viewed by others


  1. Wagner, F. T. & Ross, P. N. LEED spot profile analysis of the structure of electrochemically treated Pt(100) and Pt(111) surfaces. Surf. Sci. 160, 305–330 (1985).

  2. Aberdam, D., Durand, R., Faure, R. & El-Omar, F. Structural changes of a Pt(lll) electrode induced by electrosorption of oxygen in acidic solutions: a coupled voltammetry, LEED and AES study. Surf. Sci. 171, 303–330 (1986).

    Article  CAS  Google Scholar 

  3. You, H. & Nagy, Z. Oxidation–reduction-induced roughening of platinum (111) surface. Physica B 198, 187–194 (1994).

  4. You, H., Zurawski, D. J., Nagy, Z. & Yonco, R. M. In-situ x-ray reflectivity study of incipient oxidation of Pt(111) surface in electrolyte solutions. J. Chem. Phys. 100, 4699–4702 (1994).

  5. Nagy, Z. & You, H. Applications of surface X-ray scattering to electrochemistry problems. Electrochim. Acta 47, 3037–3055 (2002).

    Article  CAS  Google Scholar 

  6. Sugawara, S. & Itaya, K. In situ scanning tunnelling microscopy of a platinum {111} surface in aqueous sulphuric acid solution. J. Chem. Soc., Faraday Trans. 1 85, 1351–1356 (1989).

  7. Itaya, K. In situ scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps. J. Vac. Sci. Technol. A 8, 515–519 (1990).

  8. Sashikata, K., Furuya, N. & Itaya, K. In situ electrochemical scanning tunneling microscopy of single-crystal surfaces of Pt(111), Rh(111), and Pd(111) in aqueous sulfuric acid solution. J. Vac. Sci. Technol. B 9, 457–564 (1991).

  9. Breuer, N., Funtikov, A., Stimming, U. & Vogel, R. In situ electrochemical STM imaging of roughened gold and platinum electrode surfaces. Surf. Sci. 335, 145–154 (1995).

    Article  CAS  Google Scholar 

  10. Furuya, N. & Shibata, M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions. J. Electroanal. Chem. 467, 85–91 (1999).

    Article  CAS  Google Scholar 

  11. Björling, A., Ahlberg, E. & Feliu, J. M. Kinetics of surface modification induced by submonolayer electrochemical oxygen adsorption on Pt(1 1 1). Electrochem. Commun. 12, 359–361 (2010).

    Article  Google Scholar 

  12. Björling, A. & Feliu, J. M. Electrochemical surface reordering of Pt(111): A quantification of the place-exchange process. J. Electroanal. Chem. 662, 17–24 (2011).

    Article  Google Scholar 

  13. Björling, A., Herrero, E. & Feliu, J. M. Electrochemical oxidation of Pt (1 1 1) vicinal surfaces: effects of surface structure and specific anion adsorption. J. Phys. Chem. C 115, 15509–15515 (2011).

  14. Gómez-Marín, A. M. & Feliu, J. M. Pt(111) surface disorder kinetics in perchloric acid solutions and the influence of specific anion adsorption. Electrochim. Acta 82, 558–569 (2012).

    Article  Google Scholar 

  15. Gómez-Marín, A. M. & Feliu, J. M. Oxide growth dynamics at Pt(111) in absence of specific adsorption: A mechanistic study. Electrochim. Acta 104, 367–377 (2013).

    Article  Google Scholar 

  16. Löffler, T., Bussar, R., Xiao, X., Ernst, S. & Baltruschat, H. The adsorption of ethene on vicinally stepped electrode surfaces and the effect of temperature. J. Electroanal. Chem. 629, 1–14 (2009).

    Article  Google Scholar 

  17. Wakisaka, M., Asizawa, S., Uchida, H. & Watanabe, M. In situ STM observation of morphological changes of the Pt(111) electrode surface during potential cycling in 10 mM HF solution. Phys. Chem. Chem. Phys. 12, 4184–4190 (2010).

    Article  CAS  Google Scholar 

  18. Liu, Y., Barbour, A., Komanicky, V. & You, H. X-ray crystal truncation rod studies of surface oxidation and reduction on Pt(111). J. Phys. Chem. C. 120, 16174–16178 (2016).

    Article  CAS  Google Scholar 

  19. Goryachev, A. et al. Synchrotron based operando surface X-ray scattering study towards structure-activity relationships of model electrocatalysts. ChemistrySelect 1, 1104–1108 (2016).

    Article  CAS  Google Scholar 

  20. Drnec, J. et al. Initial stages of Pt(111) electrooxidation: dynamic and structural studies by surface X-ray diffraction. Electrochim. Acta 224, 220–227 (2017).

    Article  CAS  Google Scholar 

  21. Ruge, M. et al. Structural reorganisation of Pt(111) electrodes by electrochemical oxidation and reduction. J. Am. Chem. Soc. 139, 4532–4539 (2017).

    Article  CAS  Google Scholar 

  22. Ruge, M. et al. Electrochemical oxidation of smooth and nanoscale rough Pt(111): An in situ surface X-ray scattering study. J. Electrochem. Soc. 164, H608–H614 (2017).

    Article  CAS  Google Scholar 

  23. Clavilier, J., El Achi, K. & Rodes, A. In situ characterization of the Pt(S)-[n(111) × (111)] electrode surfaces using electrosorbed hydrogen for probing terrace an step sites. J. Electroanal. Chem. 272, 253–261 (1989).

    Article  CAS  Google Scholar 

  24. Rodes, A., El Achi, K., Zamakhchari, M. A. & Clavilier, J. Hydrogen probing of step and terrace sites on Pt(S)-[n(111) × (100)] electrodes. J. Electroanal. Chem. 284, 245–253 (1990).

    Article  CAS  Google Scholar 

  25. Rodes, A. & Clavilier, J. Electrochemical study of step reconstruction on platinum surfaces belonging to the [011] zone between Pt(311) and Pt(111). J. Electroanal. Chem. 344, 269–288 (1993).

    Article  CAS  Google Scholar 

  26. Clavilier, J. & Rodes, A. Electrochemical detection and characterization at Pt(N,N,N-2) oriented electrodes of multiatomic step formation induced by quenching at high-temperatures. J. Electroanal. Chem. 348, 247–264 (1993).

    Article  CAS  Google Scholar 

  27. Solla-Gullón, J., Rodríguez, P., Herrero, E., Aldaz, A. & Feliu, J. M. Surface characterization of platinum electrodes. Phys. Chem. Chem. Phys. 10, 1359–1373 (2008).

    Article  Google Scholar 

  28. Vidal-Iglesias, F. J., Arán-Ais, R. M., Solla-Gullón, J., Herrero, E. & Feliu, J. M. Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal. 2, 901–910 (2012).

    Article  CAS  Google Scholar 

  29. Van Der Niet, M. J. T. C., Garcia-Araez, N., Hernández, J., Feliu, J. M. & Koper, M. T. M. Water dissociation on well-defined platinum surfaces: The electrochemical perspective. Catal. Today 202, 105–113 (2013).

    Article  Google Scholar 

  30. Huang, Y.-F., Kooyman, P. J. & Koper, M. T. M. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat. Commun. 7, 12440 (2016).

    Article  CAS  Google Scholar 

  31. Topalov, A. A. et al. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion? Angew. Chem. Int. Ed. 51, 12613–12615 (2012).

    Article  CAS  Google Scholar 

  32. Lopes, P. P. et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6, 2536–2544 (2016).

    Article  CAS  Google Scholar 

  33. Gomez, R., Orts, J. M., Alvarez-Ruiz, B. & Feliu, J. M. Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4. J. Phys. Chem. B 108, 228–238 (2004).

    Article  CAS  Google Scholar 

  34. Furuya, N. & Koide, S. Hydrogen adsorption on platinum single-crystal surfaces. Surf. Sci. 220, 18–28 (1989).

    Article  CAS  Google Scholar 

  35. Domke, K., Herrero, E., Rodes, A. & Feliu, J. M. Determination of the potentials of zero total charge of Pt(100) stepped surfaces in the [011] zone. Effect of the step density and anion adsorption. J. Electroanal. Chem. 552, 115–128 (2003).

    Article  CAS  Google Scholar 

  36. Giesen, M. & Schulze Icking-Konert, G. & Ibach, H. Interlayer mass transport and quantum confinement of electronic states. Phys. Rev. Lett. 82, 3101–3104 (1999).

    Article  CAS  Google Scholar 

  37. Lee, J., Lee, J., Tanaka, T. & Mori, H. In situ atomic-scale observation of melting point suppression in nanometer-sized gold particles. Nanotechnology 20, 475706 (2009).

    Article  Google Scholar 

  38. Michely, T. & Krug, J. Islands, Mounds and Atoms (Springer, Berlin, Heidelberg, 2004).

    Book  Google Scholar 

  39. Ibach, H. Physics of Surfaces and Interfaces (Springer, Berlin, Heidelberg, 2006).

    Google Scholar 

  40. Ehrlich, G. & Hudda, F. G. Atomic view of surface self-diffusion: tungsten on tungsten. J. Chem. Phys. 44, 1039–1049 (1966).

  41. Schwoebel, R. L. & Shipsey, E. J. Step motion on crystal surfaces. J. Appl. Phys. 37, 3682–3686 (1966).

  42. Sekerka, R. F. in Crystal Growth – From Fundamentals to Technology 1st edn (eds Georg Müller, J.-J. M. & Rudolph, P.) 55–93 (Elsevier, Amsterdam, 2004).

  43. Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 40, 291–306 (2005).

    Article  CAS  Google Scholar 

  44. Meakin, P. Fractals, Scaling and Growth Far from Equilibrium 119–159 (Cambridge Univ. Press, Cambridge, 1998).

  45. Giesen, M. & Ibach, H. On the mechanism of rapid mound decay. Surf. Sci. 464, L697–L702 (2000).

    Article  CAS  Google Scholar 

  46. Tong, W. M. & Williams, R. S. Kinetics of surface growth: Phenomenology, scaling, and mechanisms of smoothening and roughening. Annu. Rev. Phys. Chem. 45, 401–438 (1994).

    Article  CAS  Google Scholar 

  47. Sugawara, Y., Sasaki, M., Muto, I. & Hara, N. Dissolution of platinum single crystal surfaces under potential cycling in sulfuric acid solution. ECS Trans. 64, 81–87 (2014).

    Article  CAS  Google Scholar 

  48. Eells, W. C. Formulas for probable errors of coefficients of correlation. J. Am. Stat. Assoc. 24, 170–173 (1929).

    Article  Google Scholar 

  49. Yanson, Y. I. & Rost, M. J. Structural accelerating effect of chloride on copper electrodeposition. Angew. Chem. Int. Ed. 52, 2454–2458 (2013).

    Article  CAS  Google Scholar 

  50. Yanson, Y. I., Schenkel, F. & Rost, M. J. Design of a high-speed electrochemical scanning tunneling microscope. Rev. Sci. Instrum. 84, 023702 (2013).

    Article  CAS  Google Scholar 

  51. Güell, A. G., Díez-Pérez, I., Gorostiza, P. & Sanz, F. Preparation of reliable probes for electrochemical tunneling spectroscopy. Anal. Chem. 76, 5218–5222 (2004).

    Article  Google Scholar 

Download references


The authors acknowledge LVH Coatings for supplying their Clearclad electrophoretic paint. This work is financially supported by the European Commission Horizon 2020 - Research and Innovation Framework Programme (Marie Skłodowska-Curie Actions Individual Fellowship awarded to Y.-F.H., No. 661145, DYNECAT).

Author information

Authors and Affiliations



All authors contributed to the design of the experiment and the interpretation of the data. L.J., Y.-F.H. and M.J.R. performed the experimental work. L.J. performed the data analysis and manuscript preparation with the input of M.J.R. and M.T.M.K.

Corresponding authors

Correspondence to Marc T. M. Koper or Marcel J. Rost.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary References 1–3

Video - Movie of EC-STM experiment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobse, L., Huang, YF., Koper, M.T.M. et al. Correlation of surface site formation to nanoisland growth in the electrochemical roughening of Pt(111). Nature Mater 17, 277–282 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing