Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations

A Publisher Correction to this article was published on 20 November 2018

This article has been updated

Abstract

Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal–organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Design and fabrication of RE-fcu-MOF/polymer hybrid membranes.
Fig. 2: Gas permeation properties.
Fig. 3: Transport properties and RE-fcu-MOFs pore structure.
Fig. 4: Mixed-gas separation performance.

Change history

  • 20 November 2018

    In the version of this Article originally published, the units of the y axis of Fig. 3b were incorrectly given as ‘106 cm2 s–1’; they should have been ‘10–8 cm2 s–1’. This has been corrected in the online versions of the Article.

References

  1. 1.

    Koros, W. J. & Lively, R. P. Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes. AIChE J. 58, 2624–2633 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289–297 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Baker, R. W. & Lokhandwala, K. Natural gas processing with membranes: An overview. Ind. Eng. Chem. Res. 47, 2109–2121 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Klemola, K. T. & Ilme, J. K. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator. Ind. Eng. Chem. Res. 35, 4579–4586 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    Baker, R. W. & Low, B. T. Gas separation membrane materials: A perspective. Macromolecules 47, 6999–7013 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Liu, J. et al. Butane isomer transport properties of 6FDA–DAM and MFI–6FDA–DAM mixed matrix membranes. J. Memb. Sci. 343, 157–163 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    Agrawal, K. V. et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv. Mater. 27, 3243–3249 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  9. 9.

    Bae, T.-H. et al. Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. J. Am. Chem. Soc. 131, 14662–14663 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Chung, T.-S., Jiang, L. Y., Li, Y. & Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483–507 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Liu, G., Xiangli, F., Wei, W., Liu, S. & Jin, W. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem. Eng. J. 174, 495–503 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework–based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Cadiau, A. et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356, 731–735 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    O’Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    Article  Google Scholar 

  17. 17.

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Bae, T.-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal–organic framework crystals. Angew. Chem. Int. Ed. 49, 9863–9866 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: Continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754–1757 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Shen, J. et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J. Memb. Sci. 513, 155–165 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Memb. Sci. 389, 34–42 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Knebel, A. et al. Defibrillation of soft porous metal–organic frameworks with electric fields. Science 358, 347–351 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Belmabkhout, Y. et al. Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. J. Mater. Chem. A 5, 3293–3303 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Assen, A. H. et al. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 54, 14353–14358 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Qiu, S., Xue, M. & Zhu, G. Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116–6140 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).

    CAS  Article  Google Scholar 

  33. 33.

    Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Rosi, N. L. et al. Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504–1518 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    Xue, D.-X. et al. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135, 7660–7667 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Xue, D.-X. et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc. 137, 5034–5040 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Zhang, C. et al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J. 60, 2625–2635 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Moore, T. T. & Koros, W. J. Non-ideal effects in organic–inorganic materials for gas separation membranes. J. Mol. Struct. 739, 87–98 (2005).

    CAS  Article  Google Scholar 

  40. 40.

    Jia, M., Peinemann, K.-V. & Behling, R.-D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. J. Memb. Sci. 57, 289–292 (1991).

    CAS  Article  Google Scholar 

  41. 41.

    Woo, M., Choi, J. & Tsapatsis, M. Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separations. Microporous Mesoporous Mater. 110, 330–338 (2008).

    CAS  Article  Google Scholar 

  42. 42.

    Kraftschik, B., Koros, W. J., Johnson, J. R. & Karvan, O. Dense film polyimide membranes for aggressive sour gas feed separations. J. Memb. Sci. 428, 608–619 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Chatterjee, G., Houde, A. A. & Stern, S. A. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. J. Memb. Sci. 135, 99–106 (1997).

    CAS  Article  Google Scholar 

  44. 44.

    Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes - a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Memb. Sci. 107, 1–21 (1995).

    CAS  Article  Google Scholar 

  46. 46.

    Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    Zhang, C. et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 3, 2130–2134 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Rungta, M. et al. Carbon molecular sieve structure development and membrane performance relationships. Carbon 115, 237–248 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Wind, J. D. et al. Relaxation dynamics of CO2 diffusion, sorption, and polymer swelling for plasticized polyimide pembranes. Macromolecules 36, 6442–6448 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    Liu, G. et al. Molecularly designed stabilized asymmetric hollow fiber membranes for aggressive natural gas separation. Angew. Chem. Int.l Ed. 55, 13754–13758 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    Robeson, L. M. The upper bound revisited. J. Memb. Sci. 320, 390–400 (2008).

    CAS  Article  Google Scholar 

  52. 52.

    Koros, W. J. & Paul, D. R. Design considerations for measurement of gas sorption in polymers by pressure decay. J. Polym. Sci. Polym. Phys. Ed. 14, 1903–1907 (1976).

    CAS  Article  Google Scholar 

  53. 53.

    Ruthven, D. M. Sorption kinetics for diffusion-controlled systems with a strongly concentration-dependent diffusivity. Chem. Eng. Sci. 59, 4531–4545 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    Crank, J. The Mathematics of Diffusion (Oxford Univ. Press, Oxford, 1979).

Download references

Acknowledgements

The research reported in this publication was supported by KAUST CRG Research Grant URF/1/2222-01; Y.B., O.S. and M.E. acknowledge support from King Abdullah University of Science and Technology; G.L. acknowledges support from National Natural Science Foundation of China (Grant Nos.: 21490585, 21776125, 21406107).

Author information

Affiliations

Authors

Contributions

G.L. fabricated the hybrid mixed-matrix membranes and performed the adsorption and permeation tests. V.C., O.S. and Y.B. carried out the synthesis and scale-up of the MOFs. G.L., W.J.K., M.E. and Y.B. interpreted the adsorption and permeation data. K.Z., G.L., O.S. and V.C. developed the cryo-grinding/sedimentation method. K.Z. and G.L. fabricated the hybrid hollow fibre composite membranes. C.Z. guided the Maxwell prediction and diffusivity calculations. S.Y. guided the H2S sorption and permeation. W.J.K. and M.E conceived, designed and guided the whole project. G.L., Y.L., W.J.K., Y.B. and M.E. discussed the findings in this paper. G.L., Y.B. M.E. and W.J.K. coordinated the writing of the paper, and all authors contributed to revising the paper.

Corresponding authors

Correspondence to Mohamed Eddaoudi or William J. Koros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–29, Supplementary Schematic 1–4, Supplementary Tables 1–2, Supplementary References 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Chernikova, V., Liu, Y. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Mater 17, 283–289 (2018). https://doi.org/10.1038/s41563-017-0013-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing