Abstract
Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal-organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Direct prediction of gas adsorption via spatial atom interaction learning
Nature Communications Open Access 03 November 2023
-
Efficient separation of butane isomers via ZIF-8 slurry on laboratory- and pilot-scale
Nature Communications Open Access 15 August 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Change history
20 November 2018
In the version of this Article originally published, the units of the y axis of Fig. 3b were incorrectly given as “106 cm2 s-1” they should have been “10-8 cm2 s-1”. This has been corrected in the online versions of the Article.
27 May 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41563-021-01007-1
References
Koros, W. J. & Lively, R. P. Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes. AIChE J. 58, 2624-2633 (2012).
Koros, W. J. & Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 16, 289-297 (2017).
Baker, R. W. & Lokhandwala, K. Natural gas processing with membranes:-An overview. Ind. Eng. Chem. Res. 47, 2109-2121 (2008).
Klemola, K. T. & Ilme, J. K. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator. Ind. Eng. Chem. Res. 35, 4579-4586 (1996).
Baker, R. W. & Low, B. T. Gas separation membrane materials: A perspective. Macromolecules 47, 6999-7013 (2014).
Liu, J. et al. Butane isomer transport properties of 6FDA-DAM and MFI-6FDA-DAM mixed matrix membranes. J. Memb. Sci. 343, 157-163 (2009).
Agrawal, K. V. et al. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv. Mater. 27, 3243-3249 (2015).
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).
Bae, T.-H. et al. Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. J. Am. Chem. Soc. 131, 14662-14663 (2009).
Chung, T.-S., Jiang, L. Y., Li, Y. & Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 32, 483-507 (2007).
Liu, G., Xiangli, F., Wei, W., Liu, S. & Jin, W. Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chem. Eng. J. 174, 495-503 (2011).
Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80-84 (2013).
Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 353, 137-140 (2016).
Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141-144 (2016).
Cadiau, A. et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356, 731-735 (2017).
O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675-702 (2012).
Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469-472 (2002).
Peng, Y. et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356-1359 (2014).
Bae, T.-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 49, 9863-9866 (2010).
Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48-55 (2015).
Al-Maythalony, B. A. et al. Quest for anionic MOF membranes: Continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. J. Am. Chem. Soc. 137, 1754-1757 (2015).
Shen, J. et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. J. Memb. Sci. 513, 155-165 (2016).
Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Memb. Sci. 389, 34-42 (2012).
Brown, A. J. et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 345, 72-75 (2014).
Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat. Mater. 15, 845-849 (2016).
Knebel, A. et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science 358, 347-351 (2017).
Adil, K. et al. Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402-3430 (2017).
Belmabkhout, Y. et al. Metal-organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S. J. Mater. Chem. A 5, 3293-3303 (2017).
Assen, A. H. et al. Ultra-tuning of the rare-earth fcu-MOF aperture size for selective molecular exclusion of branched paraffins. Angew. Chem. Int. Ed. 54, 14353-14358 (2015).
Qiu, S., Xue, M. & Zhu, G. Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43, 6116-6140 (2014).
Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186-10191 (2006).
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148-1150 (1999).
Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373-1382 (2004).
Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127-1129 (2003).
Rosi, N. L. et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504-1518 (2005).
Xue, D.-X. et al. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake. J. Am. Chem. Soc. 135, 7660-7667 (2013).
Xue, D.-X. et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J. Am. Chem. Soc. 137, 5034-5040 (2015).
Zhang, C. et al. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J. 60, 2625-2635 (2014).
Moore, T. T. & Koros, W. J. Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 739, 87-98 (2005).
Jia, M., Peinemann, K.-V. & Behling, R.-D. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. J. Memb. Sci. 57, 289-292 (1991).
Woo, M., Choi, J. & Tsapatsis, M. Poly(1-trimethylsilyl-1-propyne)/MFI composite membranes for butane separations. Microporous Mesoporous Mater. 110, 330-338 (2008).
Kraftschik, B., Koros, W. J., Johnson, J. R. & Karvan, O. Dense film polyimide membranes for aggressive sour gas feed separations. J. Memb. Sci. 428, 608-619 (2013).
Chatterjee, G., Houde, A. A. & Stern, S. A. Poly(ether urethane) and poly(ether urethane urea) membranes with high H2S/CH4 selectivity. J. Memb. Sci. 135, 99-106 (1997).
Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes -a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128-7154 (2015).
Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Memb. Sci. 107, 1-21 (1995).
Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519-522 (2002).
Zhang, C. et al. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 3, 2130-2134 (2012).
Rungta, M. et al. Carbon molecular sieve structure development and membrane performance relationships. Carbon 115, 237-248 (2017).
Wind, J. D. et al. Relaxation dynamics of CO2 diffusion, sorption, and polymer swelling for plasticized polyimide pembranes. Macromolecules 36, 6442-6448 (2003).
Liu, G. et al. Molecularly designed stabilized asymmetric hollow fiber membranes for aggressive natural gas separation. Angew. Chem. Int.l Ed. 55, 13754-13758 (2016).
Robeson, L. M. The upper bound revisited. J. Memb. Sci. 320, 390-400 (2008).
Koros, W. J. & Paul, D. R. Design considerations for measurement of gas sorption in polymers by pressure decay. J. Polym. Sci. Polym. Phys. Ed. 14, 1903-1907 (1976).
Ruthven, D. M. Sorption kinetics for diffusion-controlled systems with a strongly concentration-dependent diffusivity. Chem. Eng. Sci. 59, 4531-4545 (2004).
Crank, J. The Mathematics of Diffusion (Oxford Univ. Press, Oxford, 1979).
Acknowledgements
The research reported in this publication was supported by KAUST CRG Research Grant URF/1/2222-01; Y.B., O.S. and M.E. acknowledge support from King Abdullah University of Science and Technology; G.L. acknowledges support from National Natural Science Foundation of China (Grant Nos.: 21490585, 21776125, 21406107).
Author information
Authors and Affiliations
Contributions
G.L. fabricated the hybrid mixed-matrix membranes and performed the adsorption and permeation tests. V.C., O.S. and Y.B. carried out the synthesis and scale-up of the MOFs. G.L., W.J.K., M.E. and Y.B. interpreted the adsorption and permeation data. K.Z., G.L., O.S. and V.C. developed the cryo-grinding/sedimentation method. K.Z. and G.L. fabricated the hybrid hollow fibre composite membranes. C.Z. guided the Maxwell prediction and diffusivity calculations. S.Y. guided the H2S sorption and permeation. W.J.K. and M.E conceived, designed and guided the whole project. G.L., Y.L., W.J.K., Y.B. and M.E. discussed the findings in this paper. G.L., Y.B. M.E. and W.J.K. coordinated the writing of the paper, and all authors contributed to revising the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures 1-29, Supplementary Schematic 1-4, Supplementary Tables 1-2, Supplementary References 1-7
Rights and permissions
About this article
Cite this article
Liu, G., Chernikova, V., Liu, Y. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Mater 17, 283–289 (2018). https://doi.org/10.1038/s41563-017-0013-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-017-0013-1
This article is cited by
-
ZIF-62 glass foam self-supported membranes to address CH4/N2 separations
Nature Materials (2023)
-
Direct prediction of gas adsorption via spatial atom interaction learning
Nature Communications (2023)
-
Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations
Nature Materials (2023)
-
Eliminating lattice defects in metal–organic framework molecular-sieving membranes
Nature Materials (2023)
-
A short review of the recent developments in functional separators for lithium-sulfur batteries
Korean Journal of Chemical Engineering (2023)