Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermochromic halide perovskite solar cells


Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phase transitions of inorganic halide perovskites.
Fig. 2: Mechanism of the moisture-triggered phase transition in inorganic perovskites.
Fig. 3: Characterization of phase transition solar cell devices.
Fig. 4: The evolution and reversibility of photovoltaic properties during phase transition cycles.


  1. 1.

    Baetens, R., Jelle, B. P. & Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells 94, 87–105 (2010).

    Article  Google Scholar 

  2. 2.

    Niklasson, G. A. & Granqvist, C. G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156 (2007).

    Article  Google Scholar 

  3. 3.

    Lampert, C. M. Chromogenic smart materials. Mater. Today 7, 28–35 (March, 2004).

    Article  Google Scholar 

  4. 4.

    Chen, C.-C. et al. Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6, 7185–7190 (2012).

    Article  Google Scholar 

  5. 5.

    Eperon, G. E., Burlakov, V. M., Goriely, A. & Snaith, H. J. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014).

    Article  Google Scholar 

  6. 6.

    Bechinger, C., Ferrer, S., Zaban, A., Sprague, J. & Gregg, B. A. Photoelectrochromic windows and displays. Nature 383, 608–610 (1996).

    Article  Google Scholar 

  7. 7.

    Lampert, C. Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 76, 489–499 (2003).

    Article  Google Scholar 

  8. 8.

    Cannavale, A. et al. Perovskite photovoltachromic cells for building integration. Energy Environ. Sci. 8, 1578–1584 (2015).

    Article  Google Scholar 

  9. 9.

    Morin, F. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34–36 (1959).

    Article  Google Scholar 

  10. 10.

    Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    Article  Google Scholar 

  11. 11.

    Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater 13, 838–842 (2014).

    Article  Google Scholar 

  12. 12.

    Li, X. et al. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016).

    Article  Google Scholar 

  13. 13.

    Quarti, C. et al. Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells. Energy Environ. Sci. 9, 155–163 (2016).

    Article  Google Scholar 

  14. 14.

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  15. 15.

    Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).

    Article  Google Scholar 

  16. 16.

    Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  Google Scholar 

  17. 17.

    Sharma, S., Weiden, N. & Weiss, A. Phase diagrams of quasibinary systems of the type: ABX3—A'BX3; ABX3—AB'X3, and ABX3—ABX'3; X=Halogen. Phys. Chem. 175, 63–80 (1992).

    Google Scholar 

  18. 18.

    Møller, C. K. Crystal structure and photoconductivity of caesium plumbohalides. Nature 182, 1436 (1958).

    Article  Google Scholar 

  19. 19.

    Lai, M. et al. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 10, 1107–1114 (2017).

    Article  Google Scholar 

  20. 20.

    De Bastiani, M. et al. Thermochromic perovskite inks for reversible smart window applications. Chem. Mater. 29, 3367–3370 (2017).

    Article  Google Scholar 

  21. 21.

    Dastidar, S. et al. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16, 3563–3570 (2016).

    Article  Google Scholar 

  22. 22.

    Mattoni, A., Filippetti, A. & Caddeo, C. Modeling hybrid perovskites by molecular dynamics. J. Phys. Condens. Mat. 29, 043001 (2016).

    Google Scholar 

  23. 23.

    Kang, J. & Wang, L.-W. High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).

    Article  Google Scholar 

  24. 24.

    Christians, J. A., Miranda Herrera, P. A. & Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015).

    Article  Google Scholar 

  25. 25.

    Leguy, A. M. et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015).

    Article  Google Scholar 

  26. 26.

    Halder, A., Choudhury, D., Ghosh, S., Subbiah, A. S. & Sarkar, S. K. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells. J. Phys. Chem. Lett. 6, 3180–3184 (2015).

    Article  Google Scholar 

  27. 27.

    You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016).

    Article  Google Scholar 

  28. 28.

    Kim, J. H. et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015).

    Article  Google Scholar 

  29. 29.

    Song, J. et al. Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem. Lett. 44, 610–612 (2015).

    Article  Google Scholar 

  30. 30.

    Marstrander, A. & Møller, C. K. The structure of white cesium lead (II) bromide, CsPbBr3. Mat. Fys. Medd. Dan. Vid. Selsk 35, 1–12 (1966).

    Google Scholar 

  31. 31.

    Dou, L. et al. Solution-processed copper/reduced-graphene-oxide core/shell nanowire transparent conductors. ACS Nano 10, 2600–2606 (2016).

    Article  Google Scholar 

  32. 32.

    Bush, K. A. et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 28, 3937–3943 (2016).

    Article  Google Scholar 

  33. 33.

    Lang, F. et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J. Phys. Chem. Lett. 6, 2745–2750 (2015).

    Article  Google Scholar 

  34. 34.

    Divitini, G. et al. In situ observation of heat-induced degradation of perovskite solar cells. Nat. Energy 1, 15012 (2016).

    Article  Google Scholar 

  35. 35.

    Eperon, G. E. & Ginger, D. S. Perovskite solar cells: Different facets of performance. Nat. Energy 1, 16109 (2016).

    Article  Google Scholar 

  36. 36.

    Chen, Q. et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 4158–4163 (2014).

    Article  Google Scholar 

  37. 37.

    Sun, B. & Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408–2413 (2005).

    Article  Google Scholar 

  38. 38.

    Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

    Article  Google Scholar 

  39. 39.

    Rietveld, H. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  Google Scholar 

  40. 40.

    Ameri, T. et al. Fabrication, optical modeling, and color characterization of semitransparent bulk-heterojunction organic solar cells in an inverted structure. Adv. Funct. Mater. 20, 1592–1598 (2010).

    Article  Google Scholar 

  41. 41.

    Matsui, M. Molecular dynamics study of MgSiO3 perovskite. Phys. Chem. Miner. 16, 234–238 (1988).

    Article  Google Scholar 

  42. 42.

    Berendsen, H., Grigera, J. & Straatsma, T. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  Google Scholar 

  43. 43.

    de Araujo, A. S., Sonoda, M. T., Piro, O. E. & Castellano, E. E. Development of new Cd2+ and Pb2+ Lennard-Jones parameters for liquid simulations. J. Phys. Chem. B 111, 2219–2224 (2007).

    Article  Google Scholar 

  44. 44.

    Mosconi, E., Azpiroz, J. M. & De Angelis, F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015).

    Article  Google Scholar 

  45. 45.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  46. 46.

    Vega, C., Abascal, J. & Nezbeda, I. Vapor–liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. J. Chem. Phys. 125, 034503 (2006).

    Article  Google Scholar 

  47. 47.

    Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    Article  Google Scholar 

  48. 48.

    Chandler, D. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68, 2959–2970 (1978).

    Article  Google Scholar 

  49. 49.

    Wang, F. & Landau, D. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001).

    Article  Google Scholar 

  50. 50.

    Weinan, E., Ren, W. & Vanden-Eijnden, E. Finite temperature string method for the study of rare events. J. Phys. Chem. B 109, 6688–6693 (2005).

    Article  Google Scholar 

Download references


This work is primarily supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (PChem KC3103). The GIWAX data were collected at the Stanford Synchrotron Radiation Light Source at SLAC National Accelerator Laboratory supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under contract no. DE-AC02-76SF00515. The XPS data was collected at the Advanced Light Source, with help from E.J. Crumlin, Q.Kong and H.Zhang, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. The RED data was collected at the Berzelii Center EXSELENT on Porous Materials, the Swedish Research Council (Grant no. 2012-4681). J.L. acknowledges the fellowship support from Shanghai University of Electric Power. M.L. and C.X. acknowledges the fellowship support from Suzhou Industrial Park. C.S.K. acknowledges support by the Alexander von Humboldt Foundation. H.C. acknowledges the postdoctoral scholarship support from the Wallenberg Foundation through the MAX IV synchrotron radiation facility program. D.L. thanks the Camille and Henry Dreyfus Foundation for funding, Award EP-14-151. S.A.H. acknowledges the support from the DOE Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Solar Energy Technologies Office administered by the Oak Ridge Institute for Science and Education (DE-AC05-06OR23100). We thank M.F. Toney for discussions on the GIWAX data, Y. Wang for the work on the supplementary videos, and J. Kanady for proofreading the manuscript.

Author information




J.L., M.L., L.D. and P.Y. conceived the idea and designed the study. J.L., M.L. and L.D. contributed to all the experimental work. C.S.K. performed the AFM measurements. H.C., F.P. and J.S. carried out the RED experiments and data analysis. D.L., S.A.H., C.X. and F.C. helped with the device characterizations. D.T.L. performed the molecular modeling. J.L. and P.Y. wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Peidong Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1–3


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Lai, M., Dou, L. et al. Thermochromic halide perovskite solar cells. Nature Mater 17, 261–267 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing