Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid-like thermal conduction in intercalated layered crystalline solids

Abstract

As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures and phase transition.
Fig. 2: Thermally populated occupational disorder of Ag atoms.
Fig. 3: Experimental and theoretical results of phonons.
Fig. 4: Suppression of TA phonons.
Fig. 5: Controllable occupational orders in A+TM3+X2−2.

Similar content being viewed by others

References

  1. Tritt, T. M. Thermal Conductivity: Theory, Properties, and Applications (Klumer Academic/Plenum Publishers, New York, USA, 2004).

  2. Frenkel, J. Kinetic Theory of Liquids (Oxford Univ. Press, London, UK, 1946).

  3. Trachenko, K. & Brazhkin, V. V. Collective modes and thermodynamics of the liquid state. Rep. Prog. Phys. 79, 016502 (2016).

    CAS  Google Scholar 

  4. Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, M.) 407–440 (CRC, Danvers, USA, 1995).

  5. Keppens, V. et al. Localized vibrational modes in metallic solids. Nature 395, 876–878 (1998).

    CAS  Google Scholar 

  6. Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7, 811–815 (2008).

    CAS  Google Scholar 

  7. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).

    CAS  Google Scholar 

  8. Padture, N. P., Gell, M. & Jordan, E. H. Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002).

    CAS  Google Scholar 

  9. Siegrist, T., Merkelbach, P. & Wuttig, M. Phase change materials: challenges on the path to a universal storage device. Annu. Rev. Condens. Matt. Phys. 3, 215–237 (2012).

    CAS  Google Scholar 

  10. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    CAS  Google Scholar 

  11. Gascoin, F. & Maignan, A. Order–disorder transition in AgCrSe2: a new route to efficient thermoelectrics. Chem. Mater. 23, 2510–2513 (2011).

    CAS  Google Scholar 

  12. Damay, F. et al. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2. Sci. Rep. 6, 23415 (2016).

    CAS  Google Scholar 

  13. Wu, D. et al. Revisiting AgCrSe2 as a promising thermoelectric material. Phys. Chem. Chem. Phys. 18, 23872–23878 (2016).

    CAS  Google Scholar 

  14. Van Der Lee, A. & Wiegers, G. A. Anharmonic thermal motion of Ag in AgCrSe2: A high-temperature single-crystal X-ray diffraction study. J. Solid State Chem. 82, 216–224 (1989).

    Google Scholar 

  15. Murphy, D. W. & Chen, H. S. Superionic conduction in AgCrS2 and AgCrSe2. J. Electrochem. Soc. 124, 1268–1271 (1977).

    CAS  Google Scholar 

  16. Onsager, L. Crystal Statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944).

    CAS  Google Scholar 

  17. Louca, D. & Egami, T. Local lattice distortions in La1–xSrxMnO3 studied by pulsed neutron scattering. Phys. Rev. B 59, 6193–6204 (1999).

    CAS  Google Scholar 

  18. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).

    CAS  Google Scholar 

  19. Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).

    CAS  Google Scholar 

  20. Zhao, L. D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    CAS  Google Scholar 

  21. Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015).

    CAS  Google Scholar 

  22. Lin, H. et al. Concerted rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem. Int. Ed. 55, 11431–11436 (2016).

    CAS  Google Scholar 

  23. Minnich, A. J., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009).

    CAS  Google Scholar 

  24. Kim, S. I. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109–114 (2015).

    CAS  Google Scholar 

  25. Liu, H. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Google Scholar 

  26. Voneshen, D. J., Walker, H. C., Refson, K. & Goff, J. P. Hopping time scales and the phonon-liquid electron-crystal picture in thermoelectric copper selenide. Phys. Rev. Lett. 118, 145901 (2017).

    CAS  Google Scholar 

  27. Hibma, T. in Intercalations Chemistry (eds Whittingham, M. S. & Jacobson, A. J.) 285–313 (Academic Press, London, UK, 1982).

  28. Subbaswamy, K. R. & Mahan, G. D. Renormalization group results for lattice-gas phase boundaries in two dimensions. Phys. Rev. Lett. 37, 642 (1976).

    CAS  Google Scholar 

  29. Brüesch, P., Hibma, T. & Bührer, W. Dynamics of the two-dimensional superionic conductor AgCrS2. Phys. Rev. B 27, 5052–5061 (1983).

    Google Scholar 

  30. Aliev, M. I. et al. Production and X-ray studies of AgCrSe2, AgCrTe2, AgNiSe2 and AgNiTe2 compounds. Doklady Akademii Nauk Azerbajdzhanskoj SSR 13, 42–46 (1981).

    Google Scholar 

  31. Neuefeind, J., Feygenson, M., Carruth, J., Hoffmann, R. & Chipley, K.  K. The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source. Nucl. Instr. Meth. Phys. Res. B 287, 68–75 (2012).

    CAS  Google Scholar 

  32. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 34, 210–213 (2001).

    CAS  Google Scholar 

  33. Isshiki, M., Ohishi, Y., Goto, S., Takeshita, K. & Ishikawa, T. High-energy X-ray diffraction beamline: BL04B2 at SPring-8. Nucl. Instr. Meth. Phys. Res. B 476–478, 663–666 (2012).

    Google Scholar 

  34. Farrow, C. L. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matt. 19, 335219 (2007).

    CAS  Google Scholar 

  35. Nakajima, K. et al. AMATERAS: a cold-neutron disk chopper spectrometer. J. Phys. Soc. Jpn 80, SB028 (2011).

    Google Scholar 

  36. Nakamura, M. et al. First demonstration of novel method for inelastic neutron scattering measurement utilizing multiple incident energies. J. Phys. Soc. Jpn 78, 093002 (2009).

    Google Scholar 

  37. Inamura, Y., Nakatani, T., Suzuki, J. & Otomo, T. Development status of software ‘Utsusemi’ for chopper spectrometers at MLF, J-PARC. J. Phys. Soc. Jpn 82, SA031 (2013).

    Google Scholar 

  38. Azuah, R. T. et al. DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl Inst. Stan. Technol. 114, 341–358 (2009).

    CAS  Google Scholar 

  39. Fåk, B. & Dorner, B. Phonon line shapes and excitation energies. Physica B 234–236, 1107–1108 (1997).

    Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  42. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  44. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Google Scholar 

  45. Romero, A. H. et al. Lattice properties of PbX (X=S,Se,Te): Experimental studies and ab initio calculations including spin-orbit effects. Phys. Rev. B 78, 224302 (2008).

    Google Scholar 

  46. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).

    Google Scholar 

  47. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    CAS  Google Scholar 

  48. Jain, A. et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Google Scholar 

  49. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the award of beam time from the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory, via proposal IPTS-13971, from SPring-8 via proposal no. 2015B1070, and from J-PARC via proposal no. 2012P0906. H.W. and R.Q.W. were supported by DOE-BES (grant no. DE-FG02-05ER46237) and the computer simulations were supported by the National Energy Research Scientific Computing Center (NERSC). Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. D.W. and J.Q.H. were supported by the Natural Science Foundation of Guangdong Province (grant no. 2015A030308001) and the leading talents programme of Guangdong Province (grant no. 00201517). H.L.Y. and Y.C. acknowledge the research computing facilities offered by ITS, HKU. We thank M. Kofu for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and H.W. planned the project. Q.Z., D.V., D.W. and J.Q.H. synthesized two samples. D.W. and J.Q.H. carried out thermoelectric measurements. X.K.N. measured the low-temperature specific heat and carried out transmission electron microscopy observation. For the sample made by Q.Z. and D.V., M.F. performed neutron powder diffraction measurements, B.L., Y.K. and K.O. collected X-ray scattering data, and B.L., Y.K., T.K., K.S., T.Y. and K.N. performed inelastic neutron scattering measurements. H.W., H.L.Y., Y.C. and R.Q.W. performed theoretical calculations. B.L., H.W., J.Q.H. and M.G.K. interpreted all results and wrote the manuscript with discussion and input from all coauthors.

Corresponding authors

Correspondence to B. Li, H. Wang, J. Q. He or M. G. Kanatzidis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1–6, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, H., Kawakita, Y. et al. Liquid-like thermal conduction in intercalated layered crystalline solids. Nature Mater 17, 226–230 (2018). https://doi.org/10.1038/s41563-017-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-017-0004-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing