Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Binding of cortical functional modules by synchronous high-frequency oscillations

Abstract

Whether high-frequency phase-locked oscillations facilitate integration (‘binding’) of information across widespread cortical areas is controversial. Here we show with intracranial electroencephalography that cortico-cortical co-ripples (~100-ms-long ~90 Hz oscillations) increase during reading and semantic decisions, at the times and co-locations when and where binding should occur. Fusiform wordform areas co-ripple with virtually all language areas, maximally from 200 to 400 ms post-word-onset. Semantically specified target words evoke strong co-rippling between wordform, semantic, executive and response areas from 400 to 800 ms, with increased co-rippling between semantic, executive and response areas prior to correct responses. Co-ripples were phase-locked at zero lag over long distances (>12 cm), especially when many areas were co-rippling. General co-activation, indexed by non-oscillatory high gamma, was mainly confined to early latencies in fusiform and earlier visual areas, preceding co-ripples. These findings suggest that widespread synchronous co-ripples may assist the integration of multiple cortical areas for sustained periods during cognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cortical ripple and co-ripple characteristics during a reading task.
Fig. 2: Co-ripple and co-HGB initial responses to words.
Fig. 3: Cortical co-ripples selective for words and semantic decisions.
Fig. 4: Response accuracy.
Fig. 5: Comparison of controls to co-ripple target responses.
Fig. 6: Widespread left-hemisphere phase-locking.

Similar content being viewed by others

Data availability

The data underlying the present study including electrode localization, ripple detections, phase data and other ripple characteristics are publicly available via Zenodo at https://doi.org/10.1101/2023.05.20.541597 (ref. 73) for density analyses and https://doi.org/10.5281/zenodo.12520199 (ref. 74) for phase analyses. Imaging and raw intracranial recordings are available upon reasonable request to the corresponding author.

Code availability

The MATLAB code underlying the present study is available via Zenodo at https://doi.org/10.1101/2023.05.20.541597 (ref. 73) for co-ripple density analyses and at https://doi.org/10.5281/zenodo.12520199 (ref. 74) for phase-related analyses. Code implementing previously published methods for ripple detection is available on GitHub (https://github.com/iverzh/ripple-detection).

References

  1. Treisman, A. Solutions to the binding problem: progress through controversy and convergence. Neuron 24, 111–125 (1999).

    Article  Google Scholar 

  2. von der Malsburg, C. & Schneider, W. A neural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Zandvakili, A. & Kohn, A. Coordinated neuronal activity enhances corticocortical communication. Neuron 87, 827–839 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat. Rev. Neurosci. 2, 539–550 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fries, P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Uhlhaas, P. et al. Neural synchrony in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3, 17 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 111–125 (1999).

    Article  Google Scholar 

  9. Ray, S. & Maunsell, J. H. Do gamma oscillations play a role in cerebral cortex? Trends Cogn. Sci. 19, 78–85 (2015).

    Article  PubMed  Google Scholar 

  10. Roelfsema, P. R. Solving the binding problem: assemblies form when neurons enhance their firing rate; they don’t need to oscillate or synchronize. Neuron 111, 1003–1019 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Merker, B. Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci. Biobehav. Rev. 37, 401–417 (2013).

    Article  PubMed  Google Scholar 

  12. Vinck, M. et al. Principles of large-scale neural interactions. Neuron 111, 987–1002 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi, T. et al. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage 229, 117726 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Halgren, E., Baudena, P., Heit, G., Clarke, J. M. & Marinkovic, K. Spatio-temporal stages in face and word processing. 1. Depth-recorded potentials in the human occipital, temporal and parietal lobes. J. Physiol. 88, 1–50 (1994).

    CAS  Google Scholar 

  15. Nobre, A., Allison, T. & McCarthy, H. Word recognition in the human inferior temporal lobe. Nature 372, 260–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Thesen, T. et al. Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat. Commun. 3, 1284 (2012).

    Article  PubMed  Google Scholar 

  17. Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113, 8162–8167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Woolnough, O. et al. Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat. Hum. Behav. 5, 389–398 (2021).

    Article  PubMed  Google Scholar 

  19. Boring, M. J. et al. Multiple adjoining word- and face-selective regions in ventral temporal cortex exhibit distinct dynamics. J. Neurosci. 41, 6314–6327 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan, A. M. et al. First-pass selectivity for semantic categories in human anteroventral temporal lobe. J. Neurosci. 31, 18119–18129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Halgren, E. in Neurobiology of Cognition (eds Scheibel, A. & Weschsler, A.) 103–150 (Guilford, 1990).

  22. Halgren, E. et al. Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. J. Physiol. 88, 51–80 (1994).

    CAS  Google Scholar 

  23. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peter, A. et al. Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 8, e42101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vinck, M. & Bosman, C. A. More gamma more predictions: gamma-synchronization as a key mechanism for efficient integration of classical receptive field inputs with surround predictions. Front. Syst. Neurosci. 10, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Singer, W. Recurrent dynamics in the cerebral cortex: integration of sensory evidence with stored knowledge. Proc. Natl Acad. Sci. USA 118, e2101043118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dickey, C. W. et al. Cortical ripples during NREM sleep and waking in humans. J. Neurosci. https://doi.org/10.1523/jneurosci.0742-22.2022 (2022).

  28. Dickey, C. W. et al. Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. Proc. Natl Acad. Sci. USA 119, e2107797119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tong, A. P. S., Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 10, e68401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verzhbinsky, I. A. et al. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc. Natl Acad. Sci. USA 121, e2312204121 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Revonsuo, A. & Newman, J. Binding and consciousness. Conscious. Cogn. 8, 123–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Norman, Y. et al. Hippocampal sharp-wave ripples linked to visual episodic recollection in humans. Science 365, eaax1030 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Vaz, A. P., Inati, S. K., Brunel, N. & Zaghloul, K. A. Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory. Science 363, 975–978 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vaz, A. P., Wittig, J. H., Inati, S. K. & Zaghloul, K. A. Replay of cortical spiking sequences during human memory retrieval. Science 367, 1131–1134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lachaux, J. P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Menon, V. & D’Esposito, M. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47, 90–103 (2022).

    Article  PubMed  Google Scholar 

  37. Humphreys, G. F. & Lambon Ralph, M. A. Fusion and fission of cognitive functions in the human parietal cortex. Cereb. Cortex 25, 3547–3560 (2015).

    Article  PubMed  Google Scholar 

  38. Squire, L. R. & Zola, S. M. Amnesia, memory and brain systems. Phil. Trans. R. Soc. Lond. B 352, 1663–1673 (1997).

    Article  CAS  Google Scholar 

  39. Barron, H. C., Garvert, M. M. & Behrens, T. E. Repetition suppression: a means to index neural representations using BOLD? Phil. Trans. R. Soc. B 371, 20150355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dehaene, S. & Cohen, L. The unique role of the visual word form area in reading. Trends Cogn. Sci. 15, 254–262 (2011).

    Article  PubMed  Google Scholar 

  41. Marinkovic, K. et al. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron 38, 487–497 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Halgren, E. et al. N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. NeuroImage 17, 1101–1116 (2002).

    Article  PubMed  Google Scholar 

  43. Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dickey, C. W. et al. Thalamic spindles and upstates coordinate cortical and hippocampal co-ripples in humans. PLoS Biol. (in the press).

  46. Bazhenov, M., Rulkov, N. F. & Timofeev, I. Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. J. Neurophysiol. 100, 1562–1575 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Buzsaki, G. Hippocampal sharp wave‐ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Maingret, N., Girardeau, G., Todorova, R., Goutierre, M. & Zugaro, M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19, 959–964 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Ego-Stengel, V. & Wilson, M. A. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2009).

    Article  Google Scholar 

  51. Jiang, X., Gonzalez-Martinez, J. & Halgren, E. Coordination of human hippocampal sharpwave-ripples during NREM sleep with cortical theta bursts, spindles, downstates and upstates. J. Neurosci. https://doi.org/10.1523/jneurosci.2857-18.2019 (2019).

  52. Jiang, X., Gonzalez-Martinez, J. & Halgren, E. Posterior hippocampal spindle-ripples co-occur with neocortical theta-bursts and down-upstates, and phase-lock with parietal spindles during NREM sleep in humans. J. Neurosci. https://doi.org/10.1523/jneurosci.2858-18.2019 (2019).

  53. Rubin, D. B. et al. Learned motor patterns are replayed in human motor cortex during sleep. J. Neurosci. https://doi.org/10.1523/jneurosci.2074-21.2022 (2022).

  54. Mashour, G. A., Roelfsema, P., Changeux, J.-P. & Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron 105, 776–798 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Francis, W. N. & Kucera, H. Frequency Analysis of English Usage: Lexicon and Grammar (Houghton Mifflin, 1982).

  56. Yang, A. I. et al. Localization of dense intracranial electrode arrays using magnetic resonance imaging. NeuroImage 63, 157–165 (2012).

    Article  PubMed  Google Scholar 

  57. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53, 1–15 (2010).

    Article  PubMed  Google Scholar 

  59. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article  PubMed  Google Scholar 

  61. Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Hyvärinen, A. Independent component analysis: recent advances. Phil. Trans. R. Soc. A 371, 20110534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  64. Jiang, X. et al. Improved identification and differentiation from epileptiform activity of human hippocampal sharp wave ripples during NREM sleep. Hippocampus 30, 610–622 (2019).

    Article  PubMed  Google Scholar 

  65. Mak-McCully, R. A. et al. Coordination of cortical and thalamic activity during non-REM sleep in humans. Nat. Commun. 8, 15499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gonzalez, C. E. et al. Theta bursts precede, and spindles follow, cortical and thalamic downstates in human NREM sleep. J. Neurosci. 38, 9989–10001 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Verzhbinsky, I. A. et al. Co-occurring ripple oscillations facilitate neuronal interactions between cortical locations in humans. Proc. Natl Acad. Sci. USA 121, e2312204121 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

    Article  Google Scholar 

  70. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article  Google Scholar 

  71. Rosen, B. Q. & Halgren, E. A whole-cortex probabilistic diffusion tractography connectome. eNeuro https://doi.org/10.1523/ENEURO.0416-20.2020 (2020).

  72. Cleary, D. R. et al. Syllable processing is organized in discrete subregions of the human superior temporal gyrus. PLoS Biol. (in the press).

  73. Garrett, J. C. et al. Binding of cortical functional modules by synchronous high frequency oscillations. Zenodo https://doi.org/10.1101/2023.05.20.541597 (2023).

  74. Garrett, J. Binding of cortical functional modules by synchronous high frequency oscillations (phase analyses). Zenodo https://doi.org/10.5281/zenodo.12520199 (2024).

Download references

Acknowledgements

We thank C. Dickey, B. Rosen, L. Breston, E. Mukamel and S. Kajfez for their support. This project was funded by National Institutes of Health grant no. MH117155 (E.H.), National Institutes of Health grant no. T32MH020002 (J.C.G.) and Office of Naval Research grant no. N00014-16-1-2829 (E.H.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: E.H. Data curation: J.C.G., E.K., I.A.V. and T.T. Formal analysis: J.C.G., I.A.V. and E.H. Funding acquisition: E.H., T.T. and O.D. Investigation: T.T., C.C., W.K.D., O.D. and E.H. Methodology: J.C.G. and E.H. Project administration: E.H., T.T. and O.D. Resources: O.D., W.K.D. and C.C. Software: J.C.G. and I.A.V. Supervision: E.H. and T.T. Visualization: J.C.G. Writing—original draft: E.H. and J.C.G. Writing—review and editing: E.H. and J.C.G.

Corresponding author

Correspondence to Eric Halgren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–9.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrett, J.C., Verzhbinsky, I.A., Kaestner, E. et al. Binding of cortical functional modules by synchronous high-frequency oscillations. Nat Hum Behav (2024). https://doi.org/10.1038/s41562-024-01952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-024-01952-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing