Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Using games to understand the mind

Abstract

Board, card or video games have been played by virtually every individual in the world. Games are popular because they are intuitive and fun. These distinctive qualities of games also make them ideal for studying the mind. By being intuitive, games provide a unique vantage point for understanding the inductive biases that support behaviour in more complex, ecological settings than traditional laboratory experiments. By being fun, games allow researchers to study new questions in cognition such as the meaning of ‘play’ and intrinsic motivation, while also supporting more extensive and diverse data collection by attracting many more participants. We describe the advantages and drawbacks of using games relative to standard laboratory-based experiments and lay out a set of recommendations on how to gain the most from using games to study cognition. We hope this Perspective will lead to a wider use of games as experimental paradigms, elevating the ecological validity, scale and robustness of research on the mind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A comparison between classic laboratory-based tasks and games developed to study different facets of cognition.
Fig. 2: Decision criteria, advantages and drawbacks of using existing games and self-made games.
Fig. 3: Decision criteria to choose between games and classical experiments.

Similar content being viewed by others

References

  1. Newell, A. et al. Human Problem Solving Vol. 104 (Prentice-Hall, 1972).

  2. Gobet, F., de Voogt, A. & Retschitzki, J. Moves in Mind: The Psychology of Board Games (Psychology Press. 2004).

  3. Gough, C. Number of gamers worldwide 2021. Statista 13, 2020 (2019).

    Google Scholar 

  4. Suchow, J. W., Griffiths, T. & Hartshorne, J. K. Workshop on scaling cognitive science. Cognitive Science Society, https://cognitivesciencesociety.org/wp-content/uploads/2020/06/cogsci20a-W6-doc.pdf (2020).

  5. Brändle, F., Allen, K. R., Tenenbaum, J. & Schulz, E. Using games to understand intelligence. Proc. Ann. Meeting Cogn. Sci. Soc. 43, https://escholarship.org/uc/item/17z2q92d (2021).

  6. DePaulis, T. Board games before Ur? Board Game Stud. J. 14, 127–144 (2020).

    Google Scholar 

  7. Greitemeyer, T. & Mügge, D. O. Video games do affect social outcomes: a meta-analytic review of the effects of violent and prosocial video game play. Pers. Soc. Psychol. Bull. 40, 578–589 (2014).

    PubMed  Google Scholar 

  8. Bertram, L. Digital learning games for mathematics and computer science education: the need for preregistered RCTs, standardized methodology, and advanced technology. Front. Psychol. 11, 2127 (2020).

  9. Manzano-León, A. et al. Between level up and game over: a systematic literature review of gamification in education. Sustainability https://doi.org/10.3390/su13042247 (2021).

  10. Fleming, T. M. et al. Serious games and gamification for mental health: current status and promising directions. Front. Psychiatry https://doi.org/10.3389/fpsyt.2016.00215 (2017).

  11. Arjoranta, J. How to define games and why we need to. Comput. Games J. 8, 109–120 (2019).

    Google Scholar 

  12. Stenros, J. The game definition game: a review. Games Cult. 12, 499–520 (2017).

    Google Scholar 

  13. Wittgenstein, L. Philosophical Investigations: The German Text, with an English Translation by G.E.M. Anscombe, P.M.S. Hacker and Joachim Schulte 4th edn (Blackwell, 2009).

  14. Aarseth, E. in From Literature to Cultural Literacy (eds Segal, N. & Koleva, D.) 180–188 (Palgrave Macmillan UK, 2014).

  15. Gentner, D. Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983).

    Google Scholar 

  16. Spelke, E. S., Breinlinger, K., Macomber, J. & Jacobson, K. Origins of knowledge. Psychol. Rev. 99, 605–632 (1992).

    CAS  PubMed  Google Scholar 

  17. Allen, K. R., Smith, K. A. & Tenenbaum, J. B. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proc. Natl Acad. Sci. USA 117, 29302–29310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L. & Efros, A. A. Investigating human priors for playing video games. PMLR 80, 1349–1357 (2018).

  19. Pouncy, T. & Gershman, S. J. Inductive biases in theory-based reinforcement learning. Cogn. Psychol. 138, 101509 (2022).

  20. Tsividis, P. A. et al. Human-level reinforcement learning through theory-based modeling, exploration, and planning. Preprint at https://doi.org/10.48550/arXiv.2107.12544 (2021).

  21. van Opheusden, B. et al. Expertise increases planning depth in human gameplay. Nature 618, 1000–1005 (2023).

  22. Coutrot, A. et al. Global determinants of navigation ability. Curr. Biol. 28, 2861–2866 (2018).

    CAS  PubMed  Google Scholar 

  23. Wu, S. A. et al. Too many cooks: Bayesian inference for coordinating multi-agent collaboration. Top. Cogn. Sci. 13, 414–432 (2021).

    PubMed  Google Scholar 

  24. Carroll, M. et al. On the utility of learning about humans for human–AI coordination. Proc. 33rd International Conf. Neural Inf. Process. Syst. (eds Wallach, H. M. et al.) 5174–5185 (Curran Associates, 2019).

  25. Kumar, A. A., Steyvers, M. & Balota, D. A. Semantic memory search and retrieval in a novel cooperative word game: a comparison of associative and distributional semantic models. Cogn. Sci. 45, e13053 (2021).

    PubMed  Google Scholar 

  26. McCarthy, W. P., Hawkins, R. D., Wang, H., Holdaway, C. & Fan, J. E. Learning to communicate about shared procedural abstractions. Preprint at https://doi.org/10.48550/arXiv.2107.00077 (2021).

  27. Jun, E., Hsieh, G. & Reinecke, K. Types of motivation affect study selection, attention, and dropouts in online experiments. Proc. ACM Hum. Comput. Interact. 1, 1–15 (2017).

    Google Scholar 

  28. Brändle, F., Binz, M. & Schulz, E. in The Drive for Knowledge: The Science of Human Information Seeking (eds. Cogliati Dezzi, I. et al.) 147–168 (Cambridge Univ. Press, 2022).

  29. Leonard, J. A., Garcia, A. & Schulz, L. E. How adults’ actions, outcomes, and testimony affect preschoolers’ persistence. Child Dev. 91.4, 1254–1271 (2020).

  30. Chu, J. & Schulz, L. E. Play, curiosity, and cognition. Annu. Rev. Dev. Psychol. 2, 317–343 (2020).

    Google Scholar 

  31. Murayama, K. A reward-learning framework of knowledge acquisition: an integrated account of curiosity, interest, and intrinsic–extrinsic rewards. Psychol. Rev. 129, 175–198 (2022).

    PubMed  Google Scholar 

  32. Kosoy, E. et al. Exploring exploration: comparing children with RL agents in unified environments. In Proceedings of "Bridging AI and Cognitive Science Workshop", (2020).

  33. Brändle, F., Stocks, L., Tenenbaum, J., Gershman, S. & Schulz, E. Empowerment contributes to exploration behaviour in a creative video game. Nat. Hum. Behav. 7, 1481–1489 (2023).

    PubMed  Google Scholar 

  34. Pedersen, M. K. et al. Measuring cognitive abilities in the wild: validating a population-scale game-based cognitive assessment. Cogn. Sci. 47, e13308 (2023).

  35. Hartshorne, J. K., de Leeuw, J. R., Goodman, N. D., Jennings, M. & O’Donnell, T. J. A thousand studies for the price of one: accelerating psychological science with Pushkin. Behav. Res. Methods 51, 1782–1803 (2019).

    PubMed  Google Scholar 

  36. Thorne, H. T., Smith, J. J., Morgan, P. J., Babic, M. J. & Lubans, D. R. Video game genre preference, physical activity and screen-time in adolescent boys from low-income communities. J. Adolesc. 37, 1345–1352 (2014).

    PubMed  Google Scholar 

  37. Jansz, J., Avis, C. & Vosmeer, M. Playing the Sims2: an exploration of gender differences in players’ motivations and patterns of play. N. Media Soc. 12, 235–251 (2010).

    Google Scholar 

  38. Hartshorne, J. K., Tenenbaum, J. B. & Pinker, S. A critical period for second language acquisition: evidence from 2/3 million English speakers. Cognition 177, 263–277 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Awad, E. et al. The moral machine experiment. Nature 563, 59–64 (2018).

    CAS  PubMed  Google Scholar 

  40. Allen, K. R. et al. Lifelong learning of cognitive styles for physical problem-solving: the effect of embodied experience. Psychonomic Bull. Rev., https://doi.org/10.3758/s13423-023-02400-4 (2023).

  41. Ashmaig, O. et al. A platform for cognitive monitoring of neurosurgical patients during hospitalization. Front. Hum. Neurosci. 15, 702 (2021).

    Google Scholar 

  42. Andrews, G. Gameplay, gender, and socioeconomic status in two American high schools. E-Learn. Digit. Media 5, 199–213 (2008).

    Google Scholar 

  43. Duggan, M. Gaming and Gamers (Pew Research Center, 2015).

  44. Chassy, P. & Gobet, F. Risk taking in adversarial situations: civilization differences in chess experts. Cognition 141, 36–40 (2015).

    PubMed  Google Scholar 

  45. Morsch, F. & Feist, M. Fritz v.12 (Chessbase, 2009).

  46. Holdaway, C. & Vul, E. Risk-taking in adversarial games: what can 1 billion online chess games tell us? Proc. Ann. Meeting Cogn. Sci. Soc. 43, https://escholarship.org/uc/item/403764rd (2021).

  47. Coutrot, A. et al. Entropy of city street networks linked to future spatial navigation ability. Nature 604, 104–110 (2022).

    CAS  PubMed  Google Scholar 

  48. Coughlan, G. et al. Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proc. Natl Acad. Sci. USA 116, 9285–9292 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chu, Y. & MacGregor, J. N. Human performance on insight problem solving: a review. J. Probl. Solving 3, 6 (2011).

    Google Scholar 

  50. Gick, M. L. & Holyoak, K. J. Analogical problem solving. Cogn. Psychol. 12, 306–355 (1980).

    Google Scholar 

  51. de Groot, A. D. Het Denken van den Schaker: Een Experimenteel-Psychologische Studie (Noord-Hollandsche Uitgevers Maatschappij,1946).

  52. Chase, W. G. & Simon, H. A. Perception in chess. Cogn. Psychol. 4, 55–81 (1973).

    Google Scholar 

  53. Gobet, F. et al. Chunking mechanisms in human learning. Trends Cogn. Sci. 5, 236–243 (2001).

    CAS  PubMed  Google Scholar 

  54. Stafford, T. & Dewar, M. Tracing the trajectory of skill learning with a very large sample of online game players. Psychol. Sci. 25, 511–518 (2014).

    PubMed  Google Scholar 

  55. Eisenberg, I. W. et al. Uncovering the structure of self-regulation through data-driven ontology discovery. Nat. Commun. 10, 2319 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Rafner, J. et al. Digital games for creativity assessment: strengths, weaknesses and opportunities. Creat. Res. J. 34, 28–54 (2022).

    Google Scholar 

  57. Schulz, E., Bertram, L., Hofer, M. & Nelson, J. D. Exploring the space of human exploration using Entropy Mastermind. Preprint at bioRxiv, https://doi.org/10.1101/540666 (2019).

  58. Brown, H. R. et al. Crowdsourcing for cognitive science—the utility of smartphones. PLoS ONE 9, e100662 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Griffiths, T. L. Manifesto for a new (computational) cognitive revolution. Cognition 135, 21–23 (2015).

    PubMed  Google Scholar 

  60. Almaatouq, A. et al. Scaling Up Experimental Social, Behavioral, and Economic Science (Computational Social Science Lab at the University of Pennsylvania, 2021).

  61. Cross, L., Cockburn, J., Yue, Y. & O’Doherty, J. P. Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Neuron 109, 724–738 (2021).

    CAS  PubMed  Google Scholar 

  62. Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D. & Griffiths, T. L. Using large-scale experiments and machine learning to discover theories of human decision-making. Science 372, 1209–1214 (2021).

    CAS  PubMed  Google Scholar 

  63. Bongiorno, C. et al. Vector-based pedestrian navigation in cities. Nat. Comput. Sci. 1, 678–685 (2021).

    PubMed  Google Scholar 

  64. Sullivan, J., Mei, M., Perfors, A., Wojcik, E. & Frank, M. C. SAYCam: a large, longitudinal audiovisual dataset recorded from the infant’s perspective. Open Mind 5, 20–29 (2021).

    PubMed  PubMed Central  Google Scholar 

  65. Rafferty, A. N., Zaharia, M. & Griffiths, T. L. Optimally designing games for behavioural research. Proc. R. Soc. A 470, 20130828 (2014).

    PubMed  PubMed Central  Google Scholar 

  66. Pymunk v.6.6.0, https://pymunk.org (Victor Blomqvist, 2023).

  67. Juliani, A. et al. Unity: a general platform for intelligent agents. Preprint at https://doi.org/10.48550/arXiv.1809.02627 (2020).

  68. Mazarakis, A. & Bräuer, P. Gamification is working, but which one exactly? Results from an experiment with four game design elements. Int. J. Hum. Comput. Interact. 39, 612–627 (2023).

    Google Scholar 

  69. Hodges, N. How to gamify cognitive tasks to increase participant engagement.YouTube, https://www.youtube.com/watch?v=2TBllI4t3v4&t=2s (Sage, 2023).

  70. Silvertown, J. A new dawn for citizen science. Trends Ecol. Evol. 24, 467–471 (2009).

    PubMed  Google Scholar 

  71. van Opheusden, B., Acerbi, L. & Ma, W. J. Unbiased and efficient log-likelihood estimation with inverse binomial sampling. PLoS Comput. Biol. 16, e1008483 (2020).

    PubMed  PubMed Central  Google Scholar 

  72. Acerbi, L. & Ma, W. J. Practical Bayesian optimization for model fitting with Bayesian adaptive direct search. Adv. Neural Inf. Process. Syst. 30 (2017).

  73. Gravetter, F. J. & Forzano, L.-A. B. Research Methods for the Behavioral Sciences 4th edn (Wadsworth, 2012).

  74. Lewkowicz, D. J. The concept of ecological validity: what are its limitations and is it bad to be invalid? Infancy 2, 437–450 (2001).

    PubMed  Google Scholar 

  75. Lickliter, R. & Bahrick, L. E. The salience of multimodal sensory stimulation in early development: implications for the issue of ecological validity. Infancy 2, 451–467 (2001).

    PubMed  Google Scholar 

  76. Yang, Q. et al. Monkey plays Pac-Man with compositional strategies and hierarchical decision-making. eLife 11, e74500 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kirchner, W. K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55, 352–358 (1958).

    CAS  PubMed  Google Scholar 

  79. Gershman, S. J. Uncertainty and exploration. Decision 6, 277–286 (2019).

    PubMed  Google Scholar 

  80. Shallice, T. Specific impairments of planning. Phil. Trans. R. Soc. Lond. B 298, 199–209 (1982).

    CAS  Google Scholar 

  81. Costa-Gomes, M., Crawford, V. P. & Broseta, B. Cognition and behavior in normal-form games: an experimental study. Econometrica 69, 1193–1235 (2001).

    Google Scholar 

  82. Schaul, T. A video game description language for model-based or interactive learning. In 2013 IEEE Conference on Computational Intelligence in Games (CIG) 1–8 (IEEE, 2013).

Download references

Acknowledgements

We thank A. A. Kumar and Y. Harel for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Schulz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, K., Brändle, F., Botvinick, M. et al. Using games to understand the mind. Nat Hum Behav 8, 1035–1043 (2024). https://doi.org/10.1038/s41562-024-01878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-024-01878-9

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics